
Apache Camel

U S E R G U I D E

Version 2.4.0

Copyright 2007-2010, Apache Software Foundation

1

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents ... ii

Chapter 1
Introduction ... 1

Chapter 2
Quickstart ... 1

Chapter 3
Getting Started .. 7

Chapter 4
Architecture .. 18

Chapter 5
Enterprise Integration Patterns .. 30

Chapter 6
Cook Book ... 35

Chapter 7
Tutorials ... 90

Chapter 8
Language Appendix .. 195

Chapter 9
Pattern Appendix ... 245

Chapter 10
Component Appendix ... 361

Index .. 0

ii APACHE CAMEL

C H A P T E R 1

¡ ¡ ¡ ¡

Introduction

Apache Camel is a powerful open source integration framework based on knownEnterprise
Integration Patternswith powerfulBean Integration.
Camel lets you create theEnterprise Integration Patternsto implement routing and mediation
rules in either a Java basedDomain Specific Language (or Fluent API), viaSpringbasedXml
Configurationfiles or via theScala DSL. This means you get smart completion of routing rules
in your IDE whether in your Java, Scala or XML editor.

Apache Camel usesURIsso that it can easily work directly with any kind ofTransportor
messaging model such asHTTP, ActiveMQ, JMS, JBI, SCA,MINA or CXF Bus APItogether with
working with pluggableData Formatoptions. Apache Camel is a small library which has minimal
dependenciesfor easy embedding in any Java application. Apache Camel lets you work with the
sameAPIregardless which kind ofTransportused, so learn the API once and you will be able
to interact with all theComponentsthat is provided out-of-the-box.

Apache Camel has powerfulBean Bindingand integrated seamless with popular frameworks
such asSpringandGuice.

Apache Camel has extensiveTestingsupport allowing you to easily unit test your routes.

Apache Camel can be used as a routing and mediation engine for the following projects:
¥ Apache ServiceMixwhich is the most popular and powerful distributed open source

ESB and JBI container
¥ Apache ActiveMQwhich is the most popular and powerful open source message

broker
¥ Apache CXFwhich is a smart web services suite (JAX-WS)
¥ Apache MINAa networking framework

So don't get the hump, try Camel today!

CHAPTER 1 - INTRODUCTION 1

https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Scala+DSL
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Transport
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JBI
https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/What+are+the+dependencies
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Transport
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Testing
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://mina.apache.org/

C H A P T E R 2

¡ ¡ ¡ ¡

Quickstart

To start using Apache Camel quickly, you can read through some simple examples in this
chapter. For readers who would like a more thorough introduction, please skip ahead to
Chapter 3.

WALK THROUGH AN EXAMPLE CODE

This mini-guide takes you through the source code of asimple example.

Camel can be configured either by usingSpringor directly in Java - whichthis example does.

We start with creating aCamelContext- which is a container forComponents, Routesetc:

CamelContext context = new DefaultCamelContext();

There is more than one way of adding a Component to the CamelContext. You can add
components implicitly - when we set up the routing - as we do here for theFileComponent:

context.addRoutes(new RouteBuilder() {

public void configure() {
from("test-jms:queue:test.queue").to("file: //test");
// set up a listener on the file component
from("file: //test").process(new Processor() {

public void process(Exchange e) {
System .out.println("Received exchange: " + e.getIn());

}
});

}
});

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("vm: //localhost?broker.persistent= false ");
// Note we can explicity name the component
context.addComponent("test-jms" ,
JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

1 CHAPTER 2 - QUICKSTART

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File

The above works with any JMS provider. If we know we are usingActiveMQwe can use an
even simpler form using theactiveMQComponent() methodwhile specifying thebrokerURL
used to connect to ActiveMQ

camelContext.addComponent("activemq" ,
activeMQComponent("vm: //localhost?broker.persistent= false "));

In normal use, an external system would be firing messages or events directly into Camel
through one if itsComponentsbut we are going to use theProducerTemplatewhich is a really
easy way for testing your configuration:

ProducerTemplate template = context.createProducerTemplate();

Next you must start the camel context. If you are usingSpringto configure the camel context
this is automatically done for you; though if you are using a pure Java approach then you just
need to call the start() method

camelContext.start();

This will start all of the configured routing rules.

So after starting theCamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody("test-jms:queue:test.queue" , "Test Message: " + i);

}

WHAT HAPPENS?

From theProducerTemplate- we send objects (in this case text) into theCamelContextto the
Componenttest-jms:queue:test.queue. These text objects will beconverted automaticallyinto
JMS Messages and posted to a JMS Queue namedtest.queue. When we set up theRoute, we
configured theFileComponentto listen of thetest.queue.

The FileFileComponentwill take messages off the Queue, and save them to a directory
namedtest. Every message will be saved in a file that corresponds to its destination and message
id.

Finally, we configured our own listener in theRoute- to take notifications from the
FileComponentand print them out as text.

That's it!

If you have the time then use 5 more minutes toWalk through another examplethat
demonstrates the Spring DSL (XML based) routing.

CHAPTER 2 - QUICKSTART 2

https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://camel.apache.org/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
https://cwiki.apache.org/confluence/display/CAMEL/Components
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+another+example

Camel 1.4.0 change
In Camel 1.4.0, CamelTemplate has been marked as @deprecated.
ProducerTemplate should be used instead and its created from the CamelContext
itself.

ProducerTemplate template = context.createProducerTemplate();

WALK THROUGH ANOTHER EXAMPLE

Introduction

We continue the walk fromWalk through an Example. This time we take a closer look at the
routing and explains a few pointers so you wont walk into a bear trap, but can enjoy a walk

after hours to the local pub for a large beer

First we take a moment to look at theEnterprise Integration Patternsthat is the base
pattern catalog for integrations. In particular we focus on thePipes and FiltersEIP pattern, that
is a central pattern. This is used for: route through a sequence of processing steps, each
performing a specific function - much like the Java Servlet Filters.

Pipes and filters

In this sample we want to process a message in a sequence of steps where each steps can
perform their specific function. In our example we have aJMSqueue for receiving new orders.
When an order is received we need to process it in several steps:

�� validate
�� register
�� send confirm email

This can be created in a route like this:

<route>
<from uri= "jms:queue:order" />
<pipeline>

<bean ref= "validateOrder" />
<bean ref= "registerOrder" />
<bean ref= "sendConfirmEmail" />

</pipeline>
</route>

Where as thebean ref is a reference for a spring bean id, so we define our beans using
regular Spring XML as:

3 CHAPTER 2 - QUICKSTART

https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+an+Example
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/JMS

Pipeline is default
In the route above we specifypipeline but it can be omitted as its default, so
you can write the route as:

<route>
<from uri= "jms:queue:order" />
<bean ref= "validateOrder" />
<bean ref= "registerOrder" />
<bean ref= "sendConfirmEmail" />

</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a multicast and "one" of
the endpoints to send to (as a logical group) is a pipeline of other endpoints. For example.

<route>
<from uri= "jms:queue:order" />
<multicast>

<to uri= "log:org.company.log.Category" />
<pipeline>

<bean ref= "validateOrder" />
<bean ref= "registerOrder" />
<bean ref= "sendConfirmEmail" />

</pipeline>
</multicast>

</route>

The above sends the order (fromjms:queue:order) to two locations at the same time,
our log component, and to the "pipeline" of beans which goes one to the other. If you
consider the opposite, sans the<pipeline>

<route>
<from uri= "jms:queue:order" />
<multicast>

<to uri= "log:org.company.log.Category" />
<bean ref= "validateOrder" />
<bean ref= "registerOrder" />
<bean ref= "sendConfirmEmail" />

</multicast>
</route>

you would see that multicast would not "flow" the message from one bean to the next, but
rather send the order to all 4 endpoints (1x log, 3x bean) in parallel, which is not (for this

CHAPTER 2 - QUICKSTART 4

example) what we want. We need the message to flow to the validateOrder, then to the
registerOrder, then the sendConfirmEmail so adding the pipeline, provides this facility.

<bean id= "validateOrder" class= "com.mycompany.MyOrderValidator" />

Our validator bean is a plain POJO that has no dependencies to Camel what so ever. So you
can implement this POJO as you like. Camel uses rather intelligentBean Bindingto invoke your
POJO with the payload of the received message. In this example we willnot dig into this how
this happens. You should return to this topic later when you got some hands on experience
with Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from theJMSqueue
the message is routed likePipes and Filters:
1. payload from theJMSis sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as input to the registerOrder bean
3. the output from registerOrder bean is sent as input to the sendConfirmEmail bean

Using Camel Components

In the route lets imagine that the registration of the order has to be done by sending data to a
TCP socket that could be a big mainframe. As Camel has manyComponentswe will use the
camel-mina component that supportsTCPconnectivity. So we change the route to:

<route>
<from uri= "jms:queue:order" />
<bean ref= "validateOrder" />
<to uri= "mina:tcp://mainframeip:4444?textline=true" />
<bean ref= "sendConfirmEmail" />

</route>

What we now have in the route is ato type that can be used as a direct replacement for the
bean type. The steps is now:
1. payload from theJMSis sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as text to the mainframe using TCP
3. the output from mainframe is sent back as input to the sendConfirmEmai bean

What to notice here is that theto is not the end of the route (the world) in this
example it's used in the middle of thePipes and Filters. In fact we can change thebean types to
to as well:

5 CHAPTER 2 - QUICKSTART

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/MINA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters

<route>
<from uri= "jms:queue:order" />
<to uri= "bean:validateOrder" />
<to uri= "mina:tcp://mainframeip:4444?textline=true" />
<to uri= "bean:sendConfirmEmail" />

</route>

As theto is a generic type we must state in the uri scheme which component it is. So we must
write bean: for the Beancomponent that we are using.

Conclusion

This example was provided to demonstrate the Spring DSL (XML based) as opposed to the
pure Java DSL from thefirst example. And as well to point about that theto doesn't have to be
the last node in a route graph.

This example is also based on thein-only message exchange pattern. What you must
understand as well is thein-out message exchange pattern, where the caller expects a
response. We will look into this in another example.

See also

�� Examples
�� Tutorials
�� User Guide

CHAPTER 2 - QUICKSTART 6

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Walk+through+an+Example
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Tutorials
https://cwiki.apache.org/confluence/display/CAMEL/User+Guide

C H A P T E R 3

¡ ¡ ¡ ¡

Getting Started with Apache
Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK

The purpose of a "patterns" book is not to advocate new techniques that the authors have
invented, but rather to document existing best practices within a particular field. By doing this,
the authors of a patterns book hope to spread knowledge of best practices and promote a
vocabulary for discussing architectural designs.
One of the most famous patterns books isDesign Patterns: Elements of Reusable Object-oriented
Softwareby Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Some people refer
to this as the "gang of four" book, partly to distinguish this book from other books that use
"Design Patterns" in their titles and, perhaps, partly because they cannot remember the names
of all four authors.
Since the publication ofDesign Patterns, many other patterns books, of varying quality, have been
written. One famous patterns book is calledEnterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutionsby Gregor Hohpe and Bobby Woolfe. It is common for people to
refer to this book asEIP, which is an acronym of its title. As the subtitle of EIP suggests, the
book focusses on design patterns for asynchronous messaging systems. The book discusses 65
patterns. Each pattern is given a textual name and most are also given a graphical symbol. The
graphical symbols are intended to be used in architectural diagrams.

THE CAMEL PROJECT

Camel (http://activemq.apache.org/camel/) is an open-source, Java-based project that is a part of
the ApacheActiveMQproject. Camel provides a class library that, according to its
documentation, can be used to implement 31 design patterns in the EIP book. I am not sure
why the Camel documentation discusses only 31 of the 65 EIP design patterns. Perhaps this is
due to incomplete documentation. Or perhaps it means that the Camel project, which is less
than 1 year old at the time of writing, is not yet as feature rich as the EIP book.
Because Camel implements many of the design patterns in the EIP book, it would be a good
idea for people who work with Camel to read the EIP book.

7 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://activemq.apache.org/camel/

ONLINE DOCUMENTATION FOR CAMEL

The Camel project was started in early 2007. At the time of writing, the Camel project is too
young for there to be published books available on how to use Camel. Instead, the only source
of documentation seems to thedocumentationpage on the Apache Camel website.

Here in early 2010 the Camel project have been successful for the last couple of years and
thus there are now books available about Camel. We have gathered alist of books here.

Problems with Camel's online documentation

Currently, the online documentation for the Apache Camel project suffers from two problems.
First, the documentation is incomplete. Second, there is no clearly specified reading order to
the documentation. For example, there is no table of contents. Instead, documentation is
fragmented over a collection of 100+ web pages, and hypertext links haphazardly tie these web
pages to each other. This documentation might suffice as reference material for people already
familiar with Camel but it does not qualify as a tutorial for beginners.
The problems with the documentation are unlikely to be due to, say, its author(s) lacking
writing ability. Rather, it is more likely that the problems are due to the author(s) lack of time. I
expect Camel's documentation will improve over time. I am writing this overview of Camel to
partially counter some of the problems that currently afflict the Camel documentation. In
particular, this document aims to serve as a (so far, incomplete) "beginner's guide to Camel". As
such, this document tries to complement, rather than compete with, the online Camel
documentation.

A useful tip for navigating the online documentation

There is one useful hint I can provide for reading the online Camel documentation. Each
documentation page has a logo at the top, and immediately underneath this is a think reddish
bar that contains some hypertext links. The Hypertext links on left side of this reddish bar
indicate your position in documentation. For example, If you are on the "Languages"
documentation page then the left-hand side of the reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the
Apache Camel project, and clicking on "Documentation" takes you to the main documentation
page. You can interpret the "Architeture" and "Languages" buttons as indicating you are in the
"Languages" section of the "Architecture" chapter. Doing this gives you at least some sense of
where you are within the documentation. If you are patient then you can spend a few hours
clicking on all the hypertext links you can find in the documentation pages, bookmark each page
with a hierarchical name (for example, you might bookmark the above page with the name
"Camel Ð Arch Ð Languages") and then you can use your bookmarks to serve as a primitive
table of contents for the online Camel documentation.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 8

http://activemq.apache.org/camel/documentation.html
https://cwiki.apache.org/confluence/display/CAMEL/Books

Camel in Action book
If you are on the lookup for a comprehensive and organized documentation, then
we can recommend theCamel in Actionbook, which is the Camel bible.

ONLINE JAVADOC DOCUMENTATION

The Apache Camel website providesJavadoc documentation. It is important to note that the
Javadoc documentation is spread over severalindependentJavadoc hierarchies rather than being
all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the
coreAPIs of Camel, and a separate Javadoc hierarchy for each communications technology
supported by Camel. For example, if you will be using Camel with ActiveMQ and FTP then you
need to look at the Javadoc hierarchies for thecore APIandSpring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL

I said inSection 3.1 ("Problems with Camel's online documentation")that the online Camel
documentation does not provide a tutorial for beginners. Because of this, in this section I try to
explain some of the concepts and terminology that are fundamental to Camel. This section is
not a complete Camel tutorial, but it is a first step in that direction.

Endpoint

The termendpointis often used when talking about inter-process communication. For example,
in client-server communication, the client is one endpoint and the server is the other endpoint.
Depending on the context, an endpoint might refer to anaddress, such as a host:port pair for
TCP-based communication, or it might refer to asoftware entitythat is contactable at that
address. For example, if somebody uses "www.example.com:80" as an example of an endpoint,
they might be referring to the actual port at that host name (that is, an address), or they might
be referring to the web server (that is, software contactable at that address). Often, the
distinction between the address and software contactable at that address is not an important
one.
Some middleware technologies make it possible for several software entities to be contactable
at the same physical address. For example, CORBA is an object-oriented, remote-procedure-
call (RPC) middleware standard. If a CORBA server process contains several objects then a
client can communicate with any of these objects at the samephysicaladdress (host:port), but a
client communicates with a particular object via that object'slogicaladdress (called anIORin
CORBA terminology), which consists of the physical address (host:port) plus an id that uniquely
identifies the object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA, some people may
use the term "endpoint" to refer to a CORBA server'sphysical address, while other people may

9 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/camel-2.2.0/camel-core/apidocs/index.html
http://camel.apache.org/maven/camel-2.2.0/camel-core/apidocs/index.html
http://camel.apache.org/maven/camel-2.2.0/camel-spring/apidocs/index.html
http://manning.com/ibsen

use the term to refer to thelogical addressof a single CORBA object, and other people still
might use the term to refer to any of the following:

¥ The physical address (host:port) of the CORBA server process
¥ The logical address (host:port plus id) of a CORBA object.
¥ The CORBA server process (a relatively heavyweight software entity)
¥ A CORBA object (a lightweight software entity)

Because of this, you can see that the termendpointis ambiguous in at least two ways.
First, it is ambiguous because it might refer to an address or to a software entity
contactable at that address. Second, it is ambiguous in thegranularityof what it refers
to: a heavyweight versus lightweight software entity, or physical address versus logical
address. It is useful to understand that different people use the termendpointin
slightly different (and hence ambiguous) ways because Camel's usage of this term
might be different to whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the Camel-
supported endpoint technologies.

¥ A JMS queue.
¥ A web service.
¥ A file. A file may sound like an unlikely type of endpoint, until you realize that in some

systems one application might write information to a file and, later, another
application might read that file.

¥ An FTP server.
¥ An email address. A client can send a message to an email address, and a server can

read an incoming message from a mail server.
¥ A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints
and connect these endpoints withroutes, which I will discuss later inSection 4.8
("Routes, RouteBuilders and Java DSL"). Camel defines a Java interface called
Endpoint . Each Camel-supported endpoint has a class that implements this
Endpoint interface. As I discussed inSection 3.3 ("Online Javadoc documentation"),
Camel provides a separate Javadoc hierarchy for each communications technology
supported by Camel. Because of this, you will find documentation on, say, the
JmsEndpoint class in theJMS Javadoc hierarchy, while documentation for, say, the
FtpEndpoint class is in theFTP Javadoc hierarchy.

CamelContext

A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following steps.

1. Create aCamelContext object.
2. Add endpoints Ð and possibly Components, which are discussed inSection 4.5

("Components")Ð to theCamelContext object.
3. Add routes to theCamelContext object to connect the endpoints.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 10

http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/

4. Invoke thestart() operation on theCamelContext object. This starts Camel-
internal threads that are used to process the sending, receiving and processing of
messages in the endpoints.

5. Eventually invoke thestop() operation on theCamelContext object. Doing this
gracefully stops all the endpoints and Camel-internal threads.
Note that the CamelContext.start() operation does not block indefinitely.
Rather, it starts threads internal to eachComponent andEndpoint and then
start() returns. Conversely,CamelContext.stop() waits for all the threads
internal to eachEndpoint andComponent to terminate and thenstop()
returns.
If you neglect to callCamelContext.start() in your application then messages
will not be processed because internal threads will not have been created.
If you neglect to callCamelContext.stop() before terminating your application
then the application may terminate in an inconsistent state. If you neglect to call
CamelContext.stop() in a JUnit test then the test may fail due to messages not
having had a chance to be fully processed.

CamelTemplate

Camel used to have a class calledCamelClient , but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as theTransactionTemplate andJmsTemplate classes inSpring.
TheCamelTemplate class is a thin wrapper around theCamelContext class. It has
methods that send aMessage or Exchange Ð both discussed inSection 4.6 ("Message and
Exchange")) Ð to anEndpoint Ð discussed inSection 4.1 ("Endpoint"). This provides a way to
enter messages into source endpoints, so that the messages will move along routes Ð discussed
in Section 4.8 ("Routes, RouteBuilders and Java DSL")Ð to destination endpoints.

The Meaning of URL, URI, URN and IRI

Some Camel methods take a parameter that is aURIstring. Many people know that a URI is
"something like a URL" but do not properly understand the relationship between URI and URL,
or indeed its relationship with other acronyms such as IRI and URN.
Most people are familiar withURLs(uniform resource locators), such as "http://...", "ftp://...",
"mailto:...". Put simply, a URL specifies thelocationof a resource.
A URI(uniform resource identifier) is a URLor a URN. So, to fully understand what URI means,
you need to first understand what is a URN.
URNis an acronym foruniform resource name. There are may "unique identifier" schemes in the
world, for example, ISBNs (globally unique for books), social security numbers (unique within a
country), customer numbers (unique within a company's customers database) and telephone
numbers. Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-name>:<unique-

11 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.springframework.org/

identifier>". A URN uniquely identifies aresource, such as a book, person or piece of equipment.
By itself, a URN does not specify thelocationof the resource. Instead, it is assumed that a
registryprovides a mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server application, a wall chart
or anything else that is convenient. Some hypothetical examples of URNs are
"urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee", "customer" and "foo"
in these examples) part of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you know the semantics
implied by the <scheme-name>, and (2) you have access to the registry appropriate for the
<scheme-name>. A registry does not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely misused as a
synonym for URL.
IRIis an acronym forinternationalized resource identifier. An IRI is simply an internationalized
version of a URI. In particular, a URI can contain letters and digits in the US-ASCII character
set, while a IRI can contain those same letters and digits, andalsoEuropean accented characters,
Greek letters, Chinese ideograms and so on.

Components

Componentis confusing terminology;EndpointFactorywould have been more appropriate because
a Component is a factory for creatingEndpoint instances. For example, if a Camel-based
application uses several JMS queues then the application will create one instance of the
JmsComponent class (which implements theComponent interface), and then the application
invokes thecreateEndpoint() operation on thisJmsComponent object several times.
Each invocation ofJmsComponent.createEndpoint() creates an instance of the
JmsEndpoint class (which implements theEndpoint interface). Actually, application-level
code does not invokeComponent.createEndpoint() directly. Instead, application-level
code normally invokesCamelContext.getEndpoint() ; internally, theCamelContext
object finds the desiredComponent object (as I will discuss shortly) and then invokes
createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3: //john.smith@mailserv.example.com?password=myPassword");

The parameter togetEndpoint() is a URI. The URIprefix(that is, the part before ":")
specifies the name of a component. Internally, theCamelContext object maintains a mapping
from names of components toComponent objects. For the URI given in the above example,
the CamelContext object would probably map thepop3 prefix to an instance of the
MailComponent class. Then theCamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 12

on that MailComponent object. ThecreateEndpoint() operation splits the URI into its
component parts and uses these parts to create and configure anEndpoint object.
In the previous paragraph, I mentioned that aCamelContext object maintains a mapping
from component names toComponent objects. This raises the question of how this map is
populated with namedComponent objects. There are two ways of populating the map. The
first way is for application-level code to invokeCamelContext.addComponent(String
componentName, Component component) . The example below shows a single
MailComponent object being registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3" , mailComponent);
myCamelContext.addComponent("imap" , mailComponent);
myCamelContext.addComponent("smtp" , mailComponent);

The second (and preferred) way to populate the map of namedComponent objects in the
CamelContext object is to let theCamelContext object perform lazy initialization. This
approach relies on developers following a convention when they write a class that implements
the Component interface. I illustrate the convention by an example. Let's assume you write a
class calledcom.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write a properties file
called "META-INF/services/org/apache/camel/component/foo" (without a ".properties" file
extension) that has a single entry in it calledclass , the value of which is the fully-scoped name
of your class. This is shown below.

Listing 1.Listing 1. META-INF/services/org/apache/camel/component/fooMETA-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you have
written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you add
this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint("foo:...") on aCamelContext object, Camel will find the "foo""
properties file on the CLASSPATH, get the value of theclass property from that properties
file, and use reflection APIs to create an instance of the specified class.
As I said inSection 4.1 ("Endpoint"), Camel provides out-of-the-box support for numerous
communication technologies. The out-of-the-box support consists of classes that implement the
Component interface plus properties files that enable aCamelContext object to populate
its map of namedComponent objects.
Earlier in this section I gave the following example of calling
CamelContext.getEndpoint() .

13 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

myCamelContext.getEndpoint("pop3: //john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter togetEndpoint() was a URI.
I said that because the online Camel documentation and the Camel source code both claim the
parameter is a URI. In reality, the parameter is restricted to being a URL. This is because when
Camel extracts the component name from the parameter, it looks for the first ":", which is a
simplistic algorithm. To understand why, recall fromSection 4.4 ("The Meaning of URL, URI,
URN and IRI")that a URI can be a URLor a URN. Now consider the following calls to
getEndpoint .

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It
would be more useful if the latter components were identified as "urn:foo" and "urn:bar" or,
alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you
must identify an endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter togetEndpoint() as being a URL rather than (as
claimed) a URI.

Message and Exchange

TheMessage interface provides an abstraction for a single message, such as a request, reply
or exception message.
There are concrete classes that implement theMessage interface for each Camel-supported
communications technology. For example, theJmsMessage class provides a JMS-specific
implementation of theMessage interface. The public API of theMessage interface provides
get- and set-style methods to access themessage id, bodyand individualheaderfields of a
messge.
TheExchange interface provides an abstraction for an exchange of messages, that is, a
request message and its corresponding reply or exception message. In Camel terminology, the
request, reply and exception messages are calledin, outandfaultmessages.
There are concrete classes that implement theExchange interface for each Camel-supported
communications technology. For example, theJmsExchange class provides a JMS-specific
implementation of theExchange interface. The public API of theExchange interface is quite
limited. This is intentional, and it is expected that each class that implements this interface will
provide its own technology-specific operations.
Application-level programmers rarely access theExchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are instantiated

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 14

on (a class that implements)Exchange . Because of this, theExchange interface appears a
lot in the generic signatures of classes and methods.

Processor

TheProcessor interface represents a class that processes a message. The signature of this
interface is shown below.

Listing 2.Listing 2. ProcessorProcessor

package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to theprocess() method is anExchange rather than a
Message . This provides flexibility. For example, an implementation of this method initially
might callexchange.getIn() to get the input message and process it. If an error occurs
during processing then the method can callexchange.setException() .
An application-level developer might implement theProcessor interface with a class that
executes some business logic. However, there are many classes in the Camel library that
implement theProcessor interface in a way that provides support for a design pattern in the
EIP book. For example,ChoiceProcessor implements the message router pattern, that is, it
uses a cascading if-then-else statement to route a message from an input queue to one of
several output queues. Another example is theFilterProcessor class which discards
messages that do not satisfy a statedpredicate(that is, condition).

Routes, RouteBuilders and Java DSL

A routeis the step-by-step movement of aMessage from an input queue, through arbitrary
types of decision making (such as filters and routers) to a destination queue (if any). Camel
provides two ways for an application developer to specify routes. One way is to specify route
information in an XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a JavaDSL(domain-specific language).

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can
process an input file containing keywords and syntax specific to a particular domain. This isnot
the approach taken by Camel. Camel documentation consistently uses the term "Java DSL"
instead of "DSL", but this does not entirely avoid potential confusion. The Camel "Java DSL" is a
class library that can be used in a way that looks almost like a DSL, except that it has a bit of
Java syntactic baggage. You can see this in the example below. Comments afterwards explain
some of the constructs used in the example.

15 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Listing 3.Listing 3. Example of Camel's "Java DSL"Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of an anonymous
subclass ofRouteBuilder with the specifiedconfigure() method.
TheCamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) Ð so theRouteBuilder object knows which
CamelContext object it is associated with Ð and then invokesbuilder.configure() .
The body ofconfigure() invokes methods such asfrom() , filter() , choice() ,
when() , isEqualTo() , otherwise() andto() .
TheRouteBuilder.from(String uri) method invokesgetEndpoint(uri) on the
CamelContext associated with theRouteBuilder object to get the specifiedEndpoint
and then puts aFromBuilder "wrapper" around thisEndpoint . The
FromBuilder.filter(Predicate predicate) method creates a
FilterProcessor object for thePredicate (that is, condition) object built from the
header("foo").isEqualTo("bar") expression. In this way, these operations
incrementally build up aRoute object (with aRouteBuilder wrapper around it) and add it
to the CamelContext object associated with theRouteBuilder .

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of
configuring routes and endpoints in a XML-based Spring configuration file. In particular, Java
DSL is less verbose than its XML counterpart. In addition, many integrated development
environments (IDEs) provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of
writing a parser that can process DSL stored in, say, an external file. Currently, Camel does not
provide such a DSL parser, and I do not know if it is on the "to do" list of the Camel
maintainers. I think that a DSL parser would offer a significant benefit over the current Java
DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by
reading this BNF would almost certainly be significantly less than the effort currently required
to study the API of theRouterBuilder classes.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 16

Want to know more about Camel

TheCamel in Actionbook, contains a free chapter 1, which is highly recommended to read to
get more familiar with Camel. After all three authors have worked on this chapter, it has been
reviewed extensively at four different occasions by a professional review panel, and had two
passes of copy editing. What we are saying is that it is 100+ hours of work which nobody every
would voluntarily would have used to write on these wiki pages about Camel.

17 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.manning.com/ibsen/

C H A P T E R 4

¡ ¡ ¡ ¡

Architecture

Camel uses a Java basedRouting Domain Specific Language (DSL)or an Xml Configurationto
configurerouting and mediation ruleswhich are added to aCamelContextto implement the
variousEnterprise Integration Patterns.

At a high level Camel consists of aCamelContextwhich contains a collection ofComponent
instances. AComponentis essentially a factory ofEndpointinstances. You can explicitly
configureComponentinstances in Java code or an IoC container like Spring or Guice, or they
can be auto-discovered usingURIs.

An Endpointacts rather like a URI or URL in a web application or a Destination in a JMS
system; you can communicate with an endpoint; either sending messages to it or consuming
messages from it. You can then create aProduceror Consumeron anEndpointto exchange
messages with it.

TheDSLmakes heavy use of pluggableLanguagesto create anExpressionor Predicateto
make a truly powerful DSL which is extensible to the most suitable language depending on your
needs. The following languages are supported

¥ Bean Languagefor using Java for expressions
¥ Constant
¥ the unifiedELfrom JSP and JSF
¥ Header
¥ JXPath
¥ Mvel
¥ OGNL
¥ Property
¥ Scala DSL
¥ Scripting Languagessuch as

�� BeanShell
�� JavaScript
�� Groovy
�� Python
�� PHP
�� Ruby

¥ Simple
�� File Language

¥ SQL
¥ XPath

CHAPTER 4 - ARCHITECTURE 18

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Routes
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/EL
https://cwiki.apache.org/confluence/display/CAMEL/Header
https://cwiki.apache.org/confluence/display/CAMEL/JXPath
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Property
https://cwiki.apache.org/confluence/display/CAMEL/Scala+DSL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Python
https://cwiki.apache.org/confluence/display/CAMEL/PHP
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/XPath

¥ XQuery
Most of these languages is also supported used asAnnotation Based Expression Language.

For a full details of the individual languages see theLanguage Appendix

URIS

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created
by aComponentif you refer to them withinRoutes

Current Supported URIs

Component / ArtifactId / URI Description

ActiveMQ/ activemq-camel

activemq:[topic:]destinationName

For JMS Messaging withApache
ActiveMQ

ActiveMQ Journal/ activemq-core

activemq.journal:directory-on-filesystem

Uses ActiveMQ's fast disk
journaling implementation to store
message bodies in a rolling log file

AMQP/ camel-amqp

amqp:[topic:]destinationName

For Messaging withAMQP
protocol

Atom / camel-atom

atom:uri

Working with Apache Abderafor
atom integration, such as
consuming an atom feed.

Bean/ camel-core

bean:beanName[?method=someMethod]

Uses theBean Bindingto bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Bean Validation/ camel-bean-validator

bean-validator:something

Validates the payload of a message
using the Java Validation API (JSR
303and JAXP Validation) and its
reference implementation
Hibernate Validator

19 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
https://cwiki.apache.org/confluence/display/CAMEL/Book+Languages+Appendix
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/
http://activemq.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ+Journal
https://cwiki.apache.org/confluence/display/CAMEL/AMQP
http://www.amqp.org/
http://www.amqp.org/
https://cwiki.apache.org/confluence/display/CAMEL/Atom
http://incubator.apache.org/abdera/
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Validation
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/

Browse/ camel-core

browse:someName

Provides a simple
BrowsableEndpointwhich can be
useful for testing, visualisation tools
or debugging. The exchanges sent
to the endpoint are all available to
be browsed.

Cache/ camel-cache

cache://cachename[?options]

The cache component facilitates
creation of caching endpoints and
processors usingEHCacheas the
cache implementation.

Class/ camel-core

class:className[?method=someMethod]

Uses theBean Bindingto bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages using the
jetty cometd implementationof the
bayeux protocol

Crypto (Digital Signatures)/ camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify exchanges
using the Signature Service of the
Java Cryptographic Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]

Working with Apache CXFfor
web services integration

CXFRS/ camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXFfor
REST services integration

DataSet/ camel-core

dataset:name

For load & soak testing theDataSet
provides a way to create huge
numbers of messages for sending
to Componentsor asserting that
they are consumed correctly

CHAPTER 4 - ARCHITECTURE 20

https://cwiki.apache.org/confluence/display/CAMEL/Browse
https://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
https://cwiki.apache.org/confluence/display/CAMEL/Cache
http://ehcache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Class
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Cometd
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
https://cwiki.apache.org/confluence/display/CAMEL/Crypto+(Digital+Signatures)
https://cwiki.apache.org/confluence/display/CAMEL/CXF
http://apache.org/cxf/
https://cwiki.apache.org/confluence/display/CAMEL/CXFRS
http://apache.org/cxf/
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
https://cwiki.apache.org/confluence/display/CAMEL/Components

Direct / camel-core

direct:name

Synchronous call to another
endpoint

EJB/ camel-ejb

ejb:ejbName[?method=someMethod]

Uses theBean Bindingto bind
message exchanges to EJBs. It
works like theBeancomponent
but just for accessing EJBs.
Supports EJB 3.0 onwards.

Esper/ camel-esper incamel-extra

esper:name

Working with the Esper Libraryfor
Event Stream Processing

Event/ camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

Exec/ camel-exec

exec://executable[?options]
For executing system commands

File/ camel-core

file://nameOfFileOrDirectory

Sending messages to a file or
polling a file or directory.Camel
1.x use this link File .

Flatpack/ camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or delimited
files or messages using theFlatPack
library

Freemarker/ camel-freemarker

freemarker:someTemplateResource

Generates a response using a
Freemarkertemplate

FTP/ camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over
FTP.Camel 1.x use this link
FTP .

21 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/EJB
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Esper
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
https://cwiki.apache.org/confluence/display/CAMEL/Event
https://cwiki.apache.org/confluence/display/CAMEL/Exec
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Flatpack
http://flatpack.sourceforge.net
http://flatpack.sourceforge.net
https://cwiki.apache.org/confluence/display/CAMEL/Freemarker
http://freemarker.org/
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP

FTPS/ camel-ftp

ftps://host[:port]/fileName

Sending and receiving files over FTP
Secure (TLS and SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement anOAuth consumer.
See alsoCamel Components for
Google App Engine.

GHttp / camel-gae

ghttp://hostname[:port][/path][?options]
ghttp:///path[?options]

Provides connectivity to theURL
fetch serviceof Google App Engine
but can also be used to receive
messages from servlets. See also
Camel Components for Google
App Engine.

GLogin/ camel-gae

glogin://hostname[:port][?options]

Used by Camel applications outside
Google App Engine (GAE) for
programmatic login to GAE
applications. See alsoCamel
Components for Google App
Engine.

GTask/ camel-gae

gtask://queue-name

Supports asynchronous message
processing on Google App Engine
by using thetask queueing service
as message queue. See alsoCamel
Components for Google App
Engine.

GMail/ camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails via the
mail serviceof Google App Engine.
See alsoCamel Components for
Google App Engine.

HDFS/ camel-hdfs incamel-hdfs

hdfs://path[?options]

For reading/writing from/to an
HDFSfilesystem

Hibernate/ camel-hibernate incamel-extra

hibernate://entityName

For using a database as a queue via
the Hibernatelibrary

CHAPTER 4 - ARCHITECTURE 22

https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/gauth
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/apis/accounts/docs/OAuth.html
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/ghttp
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/glogin
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/gtask
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/taskqueue/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/gmail
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://code.google.com/appengine/docs/java/mail/
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/HDFS
http://github.com/dgreco/camel-hdfs/
http://http://hadoop.apache.org/hdfs/
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
http://code.google.com/p/camel-extra/
http://www.hibernate.org/

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7 MLLP
protocol and the HL7 model using
the HAPI library

HTTP/ camel-http

http://hostname[:port]

For calling out to external HTTP
servers

iBATIS/ camel-ibatis

ibatis://sqlOperationName

Performs a query, poll, insert,
update or delete in a relational
database usingApache iBATIS

IMap/ camel-mail

imap://hostname[:port]
Receiving email using IMap

IRC/ camel-irc

irc:host[:port]/#room
For IRC communication

JavaSpace/ camel-javaspace

javaspace:jini://host?spaceName=mySpace?...

Sending and receiving messages
throughJavaSpace

JBI/ servicemix-camel

jbi:serviceName

For JBI integration such as working
with Apache ServiceMix

JCR/ camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
(JSR-170) compliant repository like
Apache Jackrabbit

JDBC/ camel-jdbc

jdbc:dataSourceName?options

For performing JDBC queries and
operations

23 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/HL7
http://hl7api.sourceforge.net
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/IRC
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
https://cwiki.apache.org/confluence/display/CAMEL/JBI
http://servicemix.apache.org
https://cwiki.apache.org/confluence/display/CAMEL/JCR
http://jackrabbit.apache.org
https://cwiki.apache.org/confluence/display/CAMEL/JDBC

Jetty/ camel-jetty

jetty:url
For exposing services over HTTP

JMS/ camel-jms

jms:[topic:]destinationName
Working with JMS providers

JPA/ camel-jpa

jpa://entityName

For using a database as a queue via
the JPA specification for working
with OpenJPA, Hibernateor
TopLink

JT/400/ camel-jt400

jt400://user:pwd@system/ <path_to_dtaq>

For integrating with data queues on
an AS/400 (aka System i, IBM i, i5,
...) system

LDAP/ camel-ldap

ldap:host[:port]?base=...[&scope= <scope>]

Performing searches on LDAP
servers (<scope> must be one of
object|onelevel|subtree)

Log/ camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to
log the message exchange to some
underlying logging system like log4j

Lucene/ camel-lucene

lucene:searcherName:insert[?analyzer= <analyzer>]
lucene:searcherName:query[?analyzer= <analyzer>]

Uses Apache Lucene to perform
Java-based indexing and full text
based searches using advanced
analysis/tokenization capabilities

Mail / camel-mail

mail://user-info@host:port
Sending and receiving email

MINA / camel-mina

[tcp|udp|vm]:host[:port]
Working with Apache MINA

CHAPTER 4 - ARCHITECTURE 24

https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA
http://openjpa.apache.org/
http://www.hibernate.org/
https://cwiki.apache.org/confluence/display/CAMEL/JT400
https://cwiki.apache.org/confluence/display/CAMEL/LDAP
https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Lucene
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/

Mock / camel-core

mock:name

For testing routes and mediation
rules using mocks

MSV/ camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a message
using theMSV Library

Nagios/ camel-nagios

nagios://host[:port]?options

Sending passive checks toNagios
usingJSendNSCA

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO based
capabilities offered by theJBoss
Netty community project

NMR / servicemix-nmr

nmr://serviceName

Integration with the Normalized
Message Router BUS inServiceMix
4.x

POP/ camel-mail

pop3://user-info@host:port

Receiving email using POP3 and
JavaMail

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component facilitates
creation of printer endpoints to
local, remote and wireless printers.
The endpoints provide the ability
to print camel directed payloads
when utilized on camel routes.

Properties/ camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in endpoint
uri definitions.

25 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/MSV
https://msv.dev.java.net/
https://cwiki.apache.org/confluence/display/CAMEL/Nagios
http://www.nagios.org/
http://code.google.com/p/jsendnsca/
https://cwiki.apache.org/confluence/display/CAMEL/Netty
http://www.jboss.org/netty
http://www.jboss.org/netty
https://cwiki.apache.org/confluence/display/CAMEL/NMR
http://servicemix.apache.org/SMX4NMR/index.html
http://servicemix.apache.org/SMX4NMR/index.html
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/Printer
https://cwiki.apache.org/confluence/display/CAMEL/Properties

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of
messages using theQuartz
scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the QuickFix for
Java engine which allow to send/
receiveFIX messages

Ref/ camel-core

ref:name

Component for lookup of existing
endpoints bound in theRegistry.

Restlet/ camel-restlet

restlet:restletUrl[?options]

Component for consuming and
producing Restful resources using
Restlet

RMI/ camel-rmi

rmi://host[:port]
Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a message
usingRelaxNG Compact Syntax

RNG / camel-jing

rng:/relativeOrAbsoluteUri

Validates the payload of a message
usingRelaxNG

RSS/ camel-rss

rss:uri

Working with ROMEfor RSS
integration, such as consuming an
RSS feed.

Scalate/ scalate-camel

scalate:templateName

Uses the givenScalatetemplate to
transform the message

CHAPTER 4 - ARCHITECTURE 26

https://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
https://cwiki.apache.org/confluence/display/CAMEL/Quickfix
http://www.fixprotocol.org
https://cwiki.apache.org/confluence/display/CAMEL/Ref
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
http://www.restlet.org
https://cwiki.apache.org/confluence/display/CAMEL/RMI
https://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
https://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/
https://cwiki.apache.org/confluence/display/CAMEL/RSS
https://rome.dev.java.net
https://cwiki.apache.org/confluence/display/CAMEL/Scalate
http://scalate.fusesource.org/

SEDA/ camel-core

seda:name

Asynchronous call to another
endpoint in the same Camel
Context

SERVLET/ camel-servlet

servlet:uri

For exposing services over HTTP
through the servlet which is
deployed into the Web container.

SFTP/ camel-ftp

sftp://host[:port]/fileName

Sending and receiving files over
SFTP (FTP over SSH).Camel 1.x
use this link FTP .

Smooks/ camel-smooks incamel-extra

unmarshal(edi)

For working with EDI parsing using
the Smooks library

SMTP/ camel-mail

smtp://user-info@host[:port]

Sending email using SMTP and
JavaMail

SMPP/ camel-smpp

smpp://user-info@host[:port]?options

To send and receive SMS using
Short Messaging Service Center
using theJSMPP library

SNMP/ camel-snmp

snmp://host[:port]?options

Polling OID values and receiving
traps using SNMP viaSNMP4J
library

SpringIntegration/ camel-spring-integration

spring-integration:defaultChannelName

The bridge component of Camel
andSpring Integration

SQL/ camel-sql

sql:select * from table where id=#

Performing SQL queries using
JDBC

27 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/Smooks
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
https://cwiki.apache.org/confluence/display/CAMEL/Mail
https://cwiki.apache.org/confluence/display/CAMEL/SMPP
http://code.google.com/p/jsmpp/
https://cwiki.apache.org/confluence/display/CAMEL/SNMP
http://snmp4j.com
https://cwiki.apache.org/confluence/display/CAMEL/SpringIntegration
http://www.springframework.org/spring-integration
https://cwiki.apache.org/confluence/display/CAMEL/SQL+Component

Stream/ camel-stream

stream:[in|out|err|file]

Read or write to an input/output/
error/file stream rather like unix
pipes

StringTemplate/ camel-stringtemplate

string-template:someTemplateResource

Generates a response using aString
Template

TCP/ camel-mina

mina:tcp://host:port

Working with TCP protocols using
Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates aMockendpoint which
expects to receive all the message
bodies that could be polled from
the given underlying endpoint

Timer / camel-core

timer://name
A timer endpoint

UDP/ camel-mina

mina:udp://host:port

Working with UDP protocols using
Apache MINA

Validation/ camel-spring

validation:someLocalOrRemoteResource

Validates the payload of a message
usingXML Schemaand JAXP
Validation

Velocity/ camel-velocity

velocity:someTemplateResource

Generates a response using an
Apache Velocitytemplate

VM / camel-core

vm:name

Asynchronous call to another
endpoint in the same JVM

CHAPTER 4 - ARCHITECTURE 28

https://cwiki.apache.org/confluence/display/CAMEL/Stream
https://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
http://www.stringtemplate.org/
http://www.stringtemplate.org/
https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Timer
https://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Validation
http://www.w3.org/XML/Schema
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://velocity.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/VM

XMPP/ camel-xmpp

xmpp://host:port/room
Working with XMPP and Jabber

XQuery / camel-saxon

xquery:someXQueryResource

Generates a response using an
XQuery template

XSLT/ camel-spring

xslt:someTemplateResource

Generates a response using an
XSLTtemplate

For a full details of the individual components see theComponent Appendix

29 CHAPTER 4 - ARCHITECTURE

https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/XSLT
http://www.w3.org/TR/xslt
https://cwiki.apache.org/confluence/display/CAMEL/Book+Component+Appendix

C H A P T E R 5

¡ ¡ ¡ ¡

Enterprise Integration Patterns

Camel supports most of theEnterprise Integration Patternsfrom the excellent bookof the
same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly
for users of Camel.

PATTERN INDEX

There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with another using
messaging?

Message
How can two applications connected by a message channel
exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a message while
maintaining independence and flexibility?

Message
Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

Message
Translator

How can systems using different data formats communicate with
each other using messaging?

Message
Endpoint

How does an application connect to a messaging channel to send
and receive messages?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS30

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one receiver will receive
the document or perform the call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all interested
receivers?

Dead
Letter
Channel

What will the messaging system do with a message it cannot
deliver?

Guaranteed
Delivery

How can the sender make sure that a message will be delivered,
even if the messaging system fails?

Message
Bus

What is an architecture that enables separate applications to
work together, but in a de-coupled fashion such that applications
can be easily added or removed without affecting the others?

Message Construction

Event Message
How can messaging be used to transmit events from one
application to another?

Request Reply
When an application sends a message, how can it get a
response from the receiver?

Correlation
Identifier

How does a requestor that has received a reply know which
request this is the reply for?

Return
Address

How does a replier know where to send the reply?

Message Routing

Content
Based
Router

How do we handle a situation where the implementation of a
single logical function (e.g., inventory check) is spread across
multiple physical systems?

Message
Filter

How can a component avoid receiving uninteresting messages?

Dynamic
Router

How can you avoid the dependency of the router on all
possible destinations while maintaining its efficiency?

31 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
https://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
https://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
https://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Return+Address
https://cwiki.apache.org/confluence/display/CAMEL/Return+Address
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router
https://cwiki.apache.org/confluence/display/CAMEL/Dynamic+Router

Recipient
List

How do we route a message to a list of (static or dynamically)
specified recipients?

Splitter
How can we process a message if it contains multiple
elements, each of which may have to be processed in a
different way?

Aggregator
How do we combine the results of individual, but related
messages so that they can be processed as a whole?

Resequencer
How can we get a stream of related but out-of-sequence
messages back into the correct order?

Composed
Message
Processor

How can you maintain the overall message flow when
processing a message consisting of multiple elements, each of
which may require different processing?

Scatter-
Gather

How do you maintain the overall message flow when a
message needs to be sent to multiple recipients, each of which
may send a reply?

Routing Slip
How do we route a message consecutively through a series of
processing steps when the sequence of steps is not known at
design-time and may vary for each message?

Throttler
How can I throttle messages to ensure that a specific endpoint
does not get overloaded, or we don't exceed an agreed SLA
with some external service?

Sampling
How can I sample one message out of many in a given period
to avoid downstream route does not get overloaded?

Delayer How can I delay the sending of a message?

Load
Balancer

How can I balance load across a number of endpoints?

Multicast
How can I route a message to a number of endpoints at the
same time?

Loop How can I repeat processing a message in a loop?

Message Transformation

Content
Enricher

How do we communicate with another system if the message
originator does not have all the required data items available?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS32

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Composed+Message+Processor
https://cwiki.apache.org/confluence/display/CAMEL/Scatter-Gather
https://cwiki.apache.org/confluence/display/CAMEL/Scatter-Gather
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Sampling
https://cwiki.apache.org/confluence/display/CAMEL/Delayer
https://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
https://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
https://cwiki.apache.org/confluence/display/CAMEL/Multicast
https://cwiki.apache.org/confluence/display/CAMEL/Loop
https://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
https://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher

Content
Filter

How do you simplify dealing with a large message, when you are
interested only in a few data items?

Claim
Check

How can we reduce the data volume of message sent across the
system without sacrificing information content?

Normalizer
How do you process messages that are semantically equivalent,
but arrive in a different format?

Sort How can I sort the body of a message?

Validate How can I validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects and the
messaging infrastructure while keeping the two independent of
each other?

Event Driven
Consumer

How can an application automatically consume messages as they
become available?

Polling
Consumer

How can an application consume a message when the
application is ready?

Competing
Consumers

How can a messaging client process multiple messages
concurrently?

Message
Dispatcher

How can multiple consumers on a single channel coordinate
their message processing?

Selective
Consumer

How can a message consumer select which messages it wishes
to receive?

Durable
Subscriber

How can a subscriber avoid missing messages while it's not
listening for them?

Idempotent
Consumer

How can a message receiver deal with duplicate messages?

Transactional
Client

How can a client control its transactions with the messaging
system?

Messaging
Gateway

How do you encapsulate access to the messaging system from
the rest of the application?

33 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

https://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Claim+Check
https://cwiki.apache.org/confluence/display/CAMEL/Claim+Check
https://cwiki.apache.org/confluence/display/CAMEL/Normalizer
https://cwiki.apache.org/confluence/display/CAMEL/Sort
https://cwiki.apache.org/confluence/display/CAMEL/Validate
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
https://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
https://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway

Service
Activator

How can an application design a service to be invoked both via
various messaging technologies and via non-messaging
techniques?

System Management

Detour
How can you route a message through intermediate steps to
perform validation, testing or debugging functions?

Wire
Tap

How do you inspect messages that travel on a point-to-point
channel?

Log How can I log processing a message?

For a full breakdown of each pattern see theBook Pattern Appendix

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS34

https://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
https://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
https://cwiki.apache.org/confluence/display/CAMEL/Detour
https://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
https://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
https://cwiki.apache.org/confluence/display/CAMEL/LogEIP
https://cwiki.apache.org/confluence/display/CAMEL/Book+Pattern+Appendix

CookBook

This document describes various recipes for working with Camel
¥ Bean Integrationdescribes how to work with beans and Camel in a loosely coupled

way so that your beans do not have to depend on any Camel APIs
�� Annotation Based Expression Languagebinds expressions to method

parameters
�� Bean Bindingdefines which methods are invoked and how the Message is

converted into the parameters of the method when it is invoked
�� Bean Injectionfor injecting Camel related resources into your POJOs
�� Parameter Binding Annotationsfor extracting various headers, properties

or payloads from a Message
�� POJO Consumingfor consuming and possibly routing messages from Camel
�� POJO Producingfor producing camel messages from your POJOs
�� RecipientList Annotationfor creating a Recipient List from a POJO method
�� Using Exchange Pattern Annotationsdescribes how pattern annotations can

be used to change the behaviour of method invocations
¥ Hiding Middlewaredescribes how to avoid your business logic being coupled to any

particular middleware APIs allowing you to easily switch from in JVMSEDAto JMS,
ActiveMQ, Hibernate, JPA, JDBC, iBATISor JavaSpaceetc.

¥ Visualisationdescribes how to visualise yourEnterprise Integration Patternsto help
you understand your routing rules

¥ Business Activity Monitoring (BAM)for monitoring business processes across systems
¥ Extract Transform Load (ETL)to load data into systems or databases
¥ Testingfor testing distributed and asynchronous systems using a messaging approach

�� Camel Testfor creating test cases using a single Java class for all your
configuration and routing

�� Spring Testinguses Spring Test together with either XML or Java Config to
dependency inject your test classes

�� Guiceuses Guice to dependency inject your test classes
¥ Templatingis a great way to create service stubs to be able to test your system

without some back end system.
¥ Databasefor working with databases
¥ Parallel Processing and Orderingon how using parallel processing andSEDAor JMS

based load balancing can be achieved.
¥ Asynchronous Processingin Camel Routes.
¥ Implementing Virtual Topics on other JMS providersshows how to get the effect of

Virtual Topics and avoid issues with JMS durable topics
¥ Camel Transport for CXFdescribes how to put the Camel context into the CXF

transport layer.

35 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Annotation+Based+Expression+Language
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Hiding+Middleware
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Visualisation
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/ETL
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/Database
https://cwiki.apache.org/confluence/display/CAMEL/Parallel+Processing+and+Ordering
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Processing
https://cwiki.apache.org/confluence/display/CAMEL/Implementing+Virtual+Topics+on+other+JMS+providers
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Transport+for+CXF

¥ Fine Grained Control Over a Channeldescribes how to deliver a sequence of
messages over a single channel and then stopping any more messages being sent over
that channel. Typically used for sending data over a socket and then closing the
socket.

¥ EventNotifier to log details about all sent Exchangesshows how to let Camels
EventNotifier log all sent to endpoint events and how long time it took.

BEAN INTEGRATION

Camel supports the integration of beans and POJOs in a number of ways

Bean Binding

Whenever Camel invokes a bean method, either via theBeancomponent,Spring Remotingor
POJO Consumingthen theBean Bindingmechanism is used to figure out what method to use
(if it is not explicit) and how to bind theMessageto the parameters possibly using the
Parameter Binding Annotations

Annotations

If a bean is defined inSpringXML or scanned using the Spring 2.5 component scanning
mechanism and a<camelContext> is used or a CamelBeanPostProcessor then we process a
number of Camel annotations to do various things such as injecting resources or producing,
consuming or routing messages.

¥ POJO Consumingto consume and possibly route messages from Camel
¥ POJO Producingto make it easy to produce camel messages from your POJOs
¥ RecipientList Annotationfor creating aRecipient Listfrom a POJO method
¥ RoutingSlip Annotationfor creating aRouting Slipfor a POJO method
¥ Bean Injectionto inject Camel related resources into your POJOs
¥ Using Exchange Pattern Annotationsdescribes how the pattern annotations can be

used to change the behaviour of method invocations withSpring Remotingor POJO
Producing

Spring Remoting

We support aSpring Remotingprovider which uses Camel as the underlying transport
mechanism. The nice thing about this approach is we can use any of the Camel transport
Componentsto communicate between beans. It also means we can useContent Based Router
and the otherEnterprise Integration Patternsin between the beans; in particular we can use
Message Translatorto be able to convert what the on-the-wire messages look like in addition
to adding various headers and so forth.

COOKBOOK 36

https://cwiki.apache.org/confluence/display/CAMEL/Fine+Grained+Control+Over+a+Channel
https://cwiki.apache.org/confluence/display/CAMEL/EventNotifier+to+log+details+about+all+sent+Exchanges
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/RecipientList+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/RoutingSlip+Annotation
https://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator

Bean Component

TheBeancomponent supports the creation of a proxy viaProxyHelperto a Java interface;
which the implementation just sends a message containing aBeanInvocationto some Camel
endpoint.

Then there is a server side implementation which consumes a message and uses theBean
Bindingto bind the message to invoke a method passing in its parameters.

Annotation Based Expression Language

You can also use any of theLanguagessupported in Camel to bind expressions to method
parameters when usingBean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject aBeanexpression

@BeanShell Inject aBeanShellexpression

@Constant Inject aConstantexpression

@EL Inject anELexpression

@Groovy Inject aGroovy expression

@Header Inject aHeaderexpression

@JavaScript Inject aJavaScriptexpression

@MVEL Inject aMvelexpression

@OGNL Inject anOGNL expression

@PHP Inject aPHPexpression

@Python Inject aPythonexpression

@Ruby Inject aRubyexpression

@Simple Inject anSimpleexpression

@XPath Inject anXPathexpression

@XQuery Inject anXQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

37 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Constant.html
https://cwiki.apache.org/confluence/display/CAMEL/Constant
http://camel.apache.org/maven/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
https://cwiki.apache.org/confluence/display/CAMEL/EL
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Header.html
https://cwiki.apache.org/confluence/display/CAMEL/Header
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://camel.apache.org/maven/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
http://camel.apache.org/maven/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
https://cwiki.apache.org/confluence/display/CAMEL/PHP
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Python.html
https://cwiki.apache.org/confluence/display/CAMEL/Python
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Simple.html
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
http://camel.apache.org/maven/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
https://cwiki.apache.org/confluence/display/CAMEL/XQuery

String body) {
// process the inbound message here

}
}

Advanced example using @Bean

And an example of using the the@Beanbinding annotation, where you can use aPojowhere
you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the idmyCorrelationIdGenerator where we
can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

ThePojoMyIdGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use theBean Bindingannotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

COOKBOOK 38

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding

}
}

And finally we just need to remember to have our bean registered in the SpringRegistry:

<bean id= "myCorrelationIdGenerator" class= "com.mycompany.MySimpleIdGenerator" />

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to useGroovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

Bean Binding

The Bean Binding in Camel defines both which methods are invoked and also how theMessage
is converted into the parameters of the method when it is invoked.

Choosing the method to invoke

The binding of a CamelMessageto a bean method call can occur in different ways, order if
importance:

¥ if the message contains the headerCamelBeanMethodName
(org.apache.camel.MethodName in Camel 1.x) then that method is invoked,
converting the body to whatever the argument is to the method

¥ the method name can be specified explicitly in theDSLor when usingPOJO
Consuming

¥ Camel 2.0: if the bean has a method that is marked with@Handler annotation
then that method is selected

¥ if the bean can be converted to aProcessorusing theType Convertermechanism
then this is used to process the message. This mechanism is used by theActiveMQ
component to allow any JMS MessageListener to be invoked directly by Camel

39 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

without having to write any integration glue code. You can use the same mechanism
to integrate Camel into any other messaging/remoting frameworks.

¥ if the body of the message can be converted to aBeanInvocation(the default payload
used by theProxyHelper) - then that its used to invoke the method and pass the
arguments

¥ otherwise the type of the method body is used to try find a method which matches;
an error is thrown if a single method cannot be chosen unambiguously.

¥ you can also use Exchange as the parameter itself, but then the return type must be
void.

In case where Camel will not be able to choose a method to invoke an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding

When a method have been chosen to be invoked Camel will bind to the parameters of the
method.

The following Camel specific types is automatic binded:
�� org.apache.camel.Exchange
�� org.apache.camel.Message
�� Camel 2.0: org.apache.camel.CamelContext
�� org.apache.camel.TypeConverter
�� Camel 2.0: org.apache.camel.spi.Registry
�� java.lang.Exception

So if you declare any of the given type above they will be provided by Camel. Anote on the
Exception is that it will bind to the caught exception of theExchange. So its often usable if
you use aPojoto handle a given using using eg anonException route.

What is most interresting is that Camel will also try to bind the body of theExchangeto the
first parameter of the method signature (albeit not of any of the types above). So if we for
instance declare e parameter as:String body then Camel will bind the IN body to this type.
Camel will also automatic type convert to the given type declared.

Okay lets show some examples.

Below is just a simple method with a body binding. Camel will bind the IN body to thebody
parameter and convert it to aString type.

public String doSomething(String body)

And in this sample we got one of the automatic binded type as well, for instance the
Registry that we can use to lookup beans.

COOKBOOK 40

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

public String doSomething(String body, Registry registry)

And we can also useExchangeas well:

public String doSomething(String body, Exchange exchange)

You can have multiple types as well

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use aPojoto handle a given custom exceptionInvalidOrderException
then we can bind that as well:
Notice we can bind to it even if we use a sub type ofjava.lang.Exception as Camel still
knows its an exception and thus can bind the caused exception (if any exists).

public String badOrder(String body, InvalidOrderException invalid)

So what about headers and other stuff? Well now it gets a bit tricky so we can use annotations
to help us. See next section for details.

Binding Annotations

You can use theParameter Binding Annotationsto customize how parameter values are
created from theMessage

Examples

For example aBeansuch as:

public class Bar {

public String doSomething(String body) {
// process the in body and return whatever you want
return "Bye World" ;

}

Or the Exchange example. Notice that the return type must bevoid when there is only a
single parameter:

public class Bar {

public void doSomething(Exchange exchange) {

41 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean

// process the exchange
exchange.getIn().setBody("Bye World");

}

@Handler

Available as of Camel 2.0

You can mark a method in your bean with the @Handler annotation to indicate that this
method should be used forBean Binding.
This has the advantage as you do not have to specify the method name in the Camel route. And
thus you do not run into problems when you rename the method name using an IDE that don't
find all references.

public class Bar {

@Handler
public String doSomething(String body) {

// process the in body and return whatever you want
return "Bye World" ;

}

POJO consuming

For example you could usePOJO Consumingto write a bean like this

public class Foo {

@Consume(uri = "activemq:my.queue")
public void doSomething(String body) {

// process the inbound message here
}

}

Here Camel with subscribe to an ActiveMQ queue, then convert the message payload to a
String (so dealing with TextMessage, ObjectMessage and BytesMessage in JMS), then process
this method.

Bean Injection

We support the injection of various resources using @EndpointInject. This can be used to
inject

COOKBOOK 42

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming

@Consume requires camel-spring
Using the@Consumeannotations requirescamel-spring that uses the
org.apache.camel.spring.CamelBeanPostProcessor to perform the
setup for this consumer and the needed bean bindings.

@MessageDriven is @deprecated
The @MessageDriven has been replaced with @Consume in Camel 1.5.0 or newer.
Its now marked as @deprecated and will be removed in Camel 2.0.

¥ Endpointinstances which can be used for testing when used withMockendpoints; see
the Spring Testingfor an example.

¥ ProducerTemplateinstances forPOJO Producing
¥ client side proxies forPOJO Producingwhich is a simple approach toSpring

Remoting

Parameter Binding Annotations

Annotations can be used to define anExpressionor to extract various headers, properties or
payloads from aMessagewhen invoking a bean method (seeBean Integrationfor more detail of
how to invoke bean methods) together with being useful to help disambiguate which method to
invoke.

If no annotations are used then Camel assumes that a single parameter is the body of the
message. Camel will then use theType Convertermechanism to convert from the expression
value to the actual type of the parameter.

The core annotations are as follows

Annotation Meaning Parameter

@Body To bind to an inbound message body

@ExchangeException
To bind to an Exception set on the exchange
(Camel 2.0)

@Header To bind to an inbound message header
String name
of the header

@Headers
To bind to the Map of the inbound message
headers

@OutHeaders
To bind to the Map of the outbound message
headers

43 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Header.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Headers.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeaders.html

camel-core
The annotations below are all part ofcamel-core and thus does not require
camel-spring or Spring. These annotations can be used with theBean
component or when invoking beans in theDSL

@Property To bind to a named property on the exchange
String name
of the
property

@Properties To bind to the property map on the exchange

@Handler

Camel 2.0: Not part as a type parameter but
stated in this table anyway to spread the good word
that we have this annotation in Camel now. See
more atBean Binding.

The follow annotations@Headers, @OutHeaders and@Properties binds to the backing
java.util.Map so you can alter the content of these maps directly, for instance using the
put method to add a new entry. See the OrderService class atException Clausefor such an
example.

Example

In this example below we have a @Consume consumer (like message driven) that consumes
JMS messages from the activemq queue. We use the @Header and @Body parameter binding
annotations to bind from the JMSMessage to the method parameters.

public class Foo {

@Consume(uri = "activemq:my.queue")
public void doSomething(@Header(name = "JMSCorrelationID") String correlationID,

@Body String body) {
// process the inbound message here

}

}

In the above Camel will extract the value of Message.getJMSCorrelationID(), then using the
Type Converterto adapt the value to the type of the parameter if required - it will inject the
parameter value for thecorrelationID parameter. Then the payload of the message will be
converted to a String and injected into thebody parameter.

You don't need to use the @Consume annotation; as you could use the CamelDSLto
route to the beans method

COOKBOOK 44

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Property.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Properties.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Exception+Clause
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/DSL

Using the DSL to invoke the bean method

Here is another example which does not usePOJO Consumingannotations but instead uses
the DSLto route messages to the bean method

public class Foo {
public void doSomething(@Header(name = "JMSCorrelationID") String correlationID,

@Body String body) {
// process the inbound message here

}

}

The routing DSL then looks like this

from("activemq:someQueue").
to("bean:myBean");

Here myBean would be looked up in theRegistry(such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try figure out what
method to call.

If you want to be explicit you can use

from("activemq:someQueue").
to("bean:myBean?methodName=doSomething");

And here we have a nifty example for you to show some great power in Camel. You can mix
and match the annotations with the normal parameters, so we can have this example with
annotations and the Exchange also:

public void doSomething(@Header(name = "user") String user, @Body String body,
Exchange exchange) {

exchange.getIn().setBody(body + "MyBean");
}

Annotation Based Expression Language

You can also use any of theLanguagessupported in Camel to bind expressions to method
parameters when usingBean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject aBeanexpression

@BeanShell Inject aBeanShellexpression

@Constant Inject aConstantexpression

45 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Constant.html
https://cwiki.apache.org/confluence/display/CAMEL/Constant

@EL Inject anELexpression

@Groovy Inject aGroovy expression

@Header Inject aHeaderexpression

@JavaScript Inject aJavaScriptexpression

@MVEL Inject aMvelexpression

@OGNL Inject anOGNL expression

@PHP Inject aPHPexpression

@Python Inject aPythonexpression

@Ruby Inject aRubyexpression

@Simple Inject anSimpleexpression

@XPath Inject anXPathexpression

@XQuery Inject anXQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

Advanced example using @Bean

And an example of using the the@Beanbinding annotation, where you can use aPojowhere
you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

COOKBOOK 46

http://camel.apache.org/maven/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
https://cwiki.apache.org/confluence/display/CAMEL/EL
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Header.html
https://cwiki.apache.org/confluence/display/CAMEL/Header
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://camel.apache.org/maven/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
http://camel.apache.org/maven/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
https://cwiki.apache.org/confluence/display/CAMEL/PHP
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Python.html
https://cwiki.apache.org/confluence/display/CAMEL/Python
http://camel.apache.org/maven/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/Simple.html
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
http://camel.apache.org/maven/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Bean.html
https://cwiki.apache.org/confluence/display/CAMEL/Pojo

And then we can have a spring bean with the idmyCorrelationIdGenerator where we
can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

ThePojoMyIdGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use theBean Bindingannotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the SpringRegistry:

<bean id= "myCorrelationIdGenerator" class= "com.mycompany.MySimpleIdGenerator" />

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to useGroovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

47 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Groovy

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

@MessageDriven or @Consume

To consume a message you use either the@MessageDrivenannotation or from 1.5.0 the
@Consumeannotation to mark a particular method of a bean as being a consumer method.
The uri of the annotation defines the CamelEndpointto consume from.

e.g. lets invoke the onCheese() method with the String body of the inbound JMS message
from ActiveMQon the cheese queue; this will use theType Converterto convert the JMS
ObjectMessage or BytesMessage to a String - or just use a TextMessage from JMS

public class Foo {

@Consume(uri= "activemq:cheese")
public void onCheese(String name) {

...
}

}

TheBean Bindingis then used to convert the inboundMessageto the parameter list used to
invoke the method .

What this does is basically create a route that looks kinda like this

from(uri).bean(theBean, "methodName");

Using context option to apply only a certain CamelContext

Available as of Camel 2.0
See the warning above.

You can use thecontext option to specify whichCamelContextthe consumer should
only apply for. For example:

@Consume(uri= "activemq:cheese" , context= "camel-1")
public void onCheese(String name) {

The consumer above will only be created for theCamelContextthat have the context id =
camel-1 . You set this id in the XML tag:

<camelContext id= "camel-1" ...>

COOKBOOK 48

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/MessageDriven.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consume.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

@MessageDriven is @deprecated
@MessageDriven is deprecated in Camel 1.x. You should use @Consume instead.
Its removed in Camel 2.0.

When using more than one CamelContext
When you use more than 1CamelContextyou might end up with each of them
creating aPOJO Consuming.
In Camel 2.0 there is a new option on@Consume that allows you to specify
whichCamelContextid/name you want it to apply for.

Using an explicit route

If you want to invoke a bean method from many different endpoints or within different complex
routes in different circumstances you can just use the normal routingDSLor the SpringXML
configuration file.

For example

from(uri).beanRef("myBean" , "methodName");

which will then look up in theRegistryand find the bean and invoke the given bean name. (You
can omit the method name and have Camel figure out the right method based on the method
annotations and body type).

Use the Bean endpoint

You can always use the bean endpoint

from(uri).to("bean:myBean?method=methodName");

Which approach to use?

Using the @MessageDriven/@Consume annotations are simpler when you are creating a
simple route with a single well defined input URI.

However if you require more complex routes or the same bean method needs to be
invoked from many places then please use the routingDSLas shown above.

There are two different ways to send messages to any CamelEndpointfrom a POJO

49 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

@EndpointInject

To allow sending of messages from POJOs you can use@EndpointInject() annotation. This will
inject either aProducerTemplateor CamelTemplateso that the bean can send message
exchanges.

e.g. lets send a message to thefoo.bar queue inActiveMQat some point

public class Foo {
@EndpointInject(uri= "activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
if (whatever) {

producer.sendBody("<hello>world!</hello>");
}

}
}

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce

We recommendHiding MiddlewareAPIs from your application code so the next option might
be more suitable.
You can add the @Produce annotation to an injection point (a field or property setter) using a
ProducerTemplateor using some interface you use in your business logic. e.g.

public interface MyListener {
String sayHello(String name);

}

public class MyBean {
@Produce(uri = "activemq:foo")
protected MyListener producer;

public void doSomething() {
// lets send a message
String response = producer.sayHello("James");

}
}

Here Camel will automatically inject a smart client side proxy at the @Produce annotation - an
instance of the MyListener instance. When we invoke methods on this interface the method call
is turned into an object and using the CamelSpring Remotingmechanism it is sent to the
endpoint - in this case theActiveMQendpoint to queuefoo ; then the caller blocks for a
response.

COOKBOOK 50

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Hiding+Middleware
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

If you want to make asynchronous message sends then usean @InOnly annotation on the
injection point.

@RECIPIENTLIST ANNOTATION

As of 1.5.0 we now support the use of @RecipientList on a bean method to easily create a
dynamicRecipient Listusing a Java method.

Simple Example using @Consume

package com.acme.foo;

public class RouterBean {

@Consume(uri = "activemq:foo")
@RecipientList
public String [] route(String body) {

return new String []{ "activemq:bar" , "activemq:whatnot" };
}

}

For example if the above bean is configured inSpringwhen using a<camelContext>
element as follows

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.5.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/

schema/spring/camel-spring.xsd
">

<camelContext xmlns= "http://activemq.apache.org/camel/schema/spring" />

<bean id= "myRecipientList" class= "com.acme.foo.RouterBean" />

</beans>

then a route will be created consuming from thefoo queue on theActiveMQcomponent
which when a message is received the message will be forwarded to the endpoints defined by
the result of this method call - namely thebar andwhatnot queues.

51 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Using+Exchange+Pattern+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ

How it works

The return value of the @RecipientList method is converted to either a java.util.Collection /
java.util.Iterator or array of objects where each element is converted to anEndpointor a String,
or if you are only going to route to a single endpoint then just return either an Endpoint object
or an object that can be converted to a String. So the following methods are all valid

@RecipientList
public String [] route(String body) { ... }

@RecipientList
public List< String > route(String body) { ... }

@RecipientList
public Endpoint route(String body) { ... }

@RecipientList
public Endpoint[] route(String body) { ... }

@RecipientList
public Collection<Endpoint> route(String body) { ... }

@RecipientList
public URI route(String body) { ... }

@RecipientList
public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to that endpoint.

You can then use whatever Java code you wish to figure out what endpoints to route to; for
example you can use theBean Bindingannotations to inject parts of the message body or
headers or useExpressionvalues on the message.

More Complex Example Using DSL

In this example we will use more complexBean Binding, plus we will use a separate route to
invoke theRecipient List

public class RouterBean2 {

@RecipientList
public String route(@Header("customerID") String custID String body) {

if (custID == null) return null ;
return "activemq:Customers.Orders." + custID;

}
}

public class MyRouteBuilder extends RouteBuilder {
protected void configure() {

from("activemq:Orders.Incoming").recipientList(bean("myRouterBean" , "route"));

COOKBOOK 52

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

}
}

Notice how we are injecting some headers or expressions and using them to determine the
recipients usingRecipient ListEIP.
See theBean Integrationfor more details.

USING EXCHANGE PATTERN ANNOTATIONS

When working withPOJO Producingor Spring Remotingyou invoke methods which typically
by default are InOut forRequest Reply. That is there is an In message and an Out for the result.
Typically invoking this operation will be synchronous, the caller will block until the server
returns a result.

Camel has flexibleExchange Patternsupport - so you can also support theEvent Message
pattern to use InOnly for asynchronous or one way operations. These are often called 'fire and
forget' like sending a JMS message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message exchange pattern
on regular Java methods, classes or interfaces.

Specifying InOnly methods

Typically the default InOut is what most folks want but you can customize to use InOnly using
an annotation.

public interface Foo {
Object someInOutMethod(String input);
String anotherInOutMethod(Cheese input);

@InOnly
void someInOnlyMethod(Document input);

}

The above code shows three methods on an interface; the first two use the default InOut
mechanism but thesomeInOnlyMethod uses the InOnly annotation to specify it as being a
oneway method call.

Class level annotations

You can also use class level annotations to default all methods in an interface to some pattern
such as

@InOnly
public interface Foo {

53 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

}

Annotations will also be detected on base classes or interfaces. So for example if you created a
client side proxy for

public class MyFoo implements Foo {
...

}

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation

You can overload a class level annotation on specific methods. A common use case for this is if
you have a class or interface with many InOnly methods but you want to just annote one or
two methods as InOut

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod(String input);

}

In the above Foo interface thesomeInOutMethod will be InOut

Using your own annotations

You might want to create your own annotations to represent a group of different bits of
metadata; such as combining synchrony, concurrency and transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to default the
exchange pattern you wish to use.

For example lets say we want to create our own annotation called @MyAsyncService

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})

// lets add the message exchange pattern to it
@Pattern(ExchangePattern.InOnly)

// lets add some other annotations - maybe transaction behaviour?

COOKBOOK 54

public @interface MyAsyncService {
}

Now we can use this annotation and Camel will figure out the correct exchange pattern...

public interface Foo {
void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@MyAsyncService
String someInOutMethod(String input);

}

When writing software these days, its important to try and decouple as much middleware code
from your business logic as possible.

This provides a number of benefits...
¥ you can choose the right middleware solution for your deployment and switch at any

time
¥ you don't have to spend a large amount of time learning the specifics of any particular

technology, whether itsJMSor JavaSpaceor Hibernateor JPAor iBATISwhatever
For example if you want to implement some kind of message passing, remoting, reliable load
balancing or asynchronous processing in your application we recommend you use Camel
annotations to bind your services and business logic to CamelComponentswhich means you
can then easily switch between things like

¥ in JVM messaging withSEDA
¥ using JMS viaActiveMQor other JMSproviders for reliable load balancing, grid or

publish and subscribe
¥ for low volume, but easier administration since you're probably already using a

database you could use
�� Hibernateor JPAto use an entity bean / table as a queue
�� iBATISto work with SQL
�� JDBCfor raw SQL access

¥ useJavaSpace

How to decouple from middleware APIs

The best approach when using remoting is to useSpring Remotingwhich can then use any
messaging or remoting technology under the covers. When using Camel's implementation you
can then use any of the CamelComponentsalong with any of theEnterprise Integration
Patterns.

55 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Hibernate
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/JavaSpace
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

Another approach is to bind Java beans to Camel endpoints via theBean Integration. For
example usingPOJO ConsumingandPOJO Producingyou can avoid using any Camel APIs to

decouple your code both from middleware APIsandCamel APIs!

VISUALISATION

Camel supports the visualisation of yourEnterprise Integration Patternsusing theGraphViz
DOT files which can either be rendered directly via a suitable GraphViz tool or turned into
HTML, PNG or SVG files via theCamel Maven Plugin.

Here is atypical exampleof the kind of thing we can generate

If you click onthe actual generated htmlyou will see that you can navigate from an EIP node
to its pattern page, along with getting hover-over tool tips ec.

How to generate

SeeCamel Dot Maven Goalor the other maven goalsCamel Maven Plugin

For OS X users

If you are using OS X then you can open the DOT file usinggraphvizwhich will then
automatically re-render if it changes, so you end up with a real time graphical representation of
the topic and queue hierarchies!

COOKBOOK 56

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://graphviz.org
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Dot+Maven+Goal
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
http://www.pixelglow.com/graphviz/

Also if you want to edit the layout a little before adding it to a wiki to distribute to your

team, open the DOT file withOmniGrafflethen just edit away

BUSINESS ACTIVITY MONITORING

TheCamel BAM module provides a Business Activity Monitoring (BAM) framework for
testing business processes across multiple message exchanges on differentEndpointinstances.

For example if you have a simple system which you submit Purchase Orders into system A
and then receive Invoices from system B, you might want to test that for a specific Purchase
Order you receive a matching Invoice from system B within a specific time period.

How Camel BAM Works

What Camel BAM does is use aCorrelation Identifieron an input message to determine which
Process Instancea message belongs to. The process instance is an entity bean which can maintain
state for eachActivity(where an activity typically maps to a single endpoint, such as the receipt
of Purchase orders, or the receipt of Invoices).

You can then add rules which are fired when a message is received on any activity such as to
set time expectations, or to perform real time reconciliation of values across activities etc.

Simple Example

The following example shows how to perform some time based rules on a simple business
process of 2 activities A and B (which maps to the Purchase Order and Invoice example above).
If you want to experiment with this scenario you could edit theTest Casewhich defines the
activities and rules, then tests that they work.

return new ProcessBuilder(jpaTemplate, transactionTemplate) {
public void configure() throws Exception {

// lets define some activities, correlating on an XPath on the message bodies
ActivityBuilder a = activity("seda:a").name("a")

.correlate(xpath("/hello/@id"));

ActivityBuilder b = activity("seda:b").name("b")
.correlate(xpath("/hello/@id"));

// now lets add some rules
b.starts().after(a.completes())

.expectWithin(seconds(1))

.errorIfOver(seconds(errorTimeout)).to("mock:overdue");
}

};

57 COOKBOOK

http://www.omnigroup.com/applications/omnigraffle/
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java

As you can see in the above example, we define two activities first, then we define rules on
when we expect the activities on an individual process instance to complete by along with the
time at which we should assume there is an error. The ProcessBuilder is-aRouteBuilderand
can be added to anyCamelContext

Complete Example

For a complete example please see theBAM Examplewhich is part of the standard Camel
Examples

Use Cases

In the world of finance a common requirement is tracking financial trades. Often a trader will
submit a Front Office Trade which then flows through the Middle Office and Back Office
through various systems to settle the trade so that money is exchanged. You may wish to add
tests that front and back office trades match up within a time period; if they don't match or a
back office trade does not arrive within a required amount of time, you might want to fire off
an alarm.

EXTRACT TRANSFORM LOAD (ETL)

TheETL(Extract, Transform, Load) is a mechanism for loading data into systems or databases
using some kind ofData Formatfrom a variety of sources; often files then usingPipes and
Filters, Message Translatorand possible otherEnterprise Integration Patterns.

So you could query data from various CamelComponentssuch asFile, HTTPor JPA,
perform multiple patterns such asSplitteror Message Translatorthen send the messages to
some otherComponent.

To show how this all fits together, try theETL Example

MOCK COMPONENT

Testingof distributed and asynchronous processing is notoriously difficult. TheMock, Testand
DataSetendpoints work great with theCamel Testing Frameworkto simplify your unit and
integration testing usingEnterprise Integration Patternsand Camel's large range ofComponents
together with the powerfulBean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is run, which typically fires messages to one or more endpoints, and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:
¥ The correct number of messages are received on each endpoint,
¥ The correct payloads are received, in the right order,

COOKBOOK 58

https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/BAM+Example
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://en.wikipedia.org/wiki/Extract,_transform,_load
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/HTTP
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/ETL+Example
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://jmock.org

¥ Messages arrive on an endpoint in order, using someExpressionto create an order
testing function,

¥ Messages arrive match some kind ofPredicatesuch as that specific headers have
certain values, or that parts of the messages match some predicate, such as by
evaluating anXPathor XQuery Expression.

Note that there is also theTest endpointwhich is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock
endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its
assertions from some sample messages in aFileor database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

reportGroup null A size to use athroughput loggerfor reporting

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the
context. Then we set an expectation, and then, after the test has run, we assert that our
expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo" , MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call theassertIsSatisfied() methodto test that the expectations were met
after running a test.

Camel will by default wait 20 seconds when theassertIsSatisfied() is invoked. This
can be configured by setting thesetResultWaitTime(millis) method.

59 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Log
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()

Setting expectations

You can see from the javadoc ofMockEndpointthe various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int)
To define the expected message count on the
endpoint.

expectedMinimumMessageCount(int)
To define the minimum number of expected
messages on the endpoint.

expectedBodiesReceived(...)
To define the expected bodies that should be
received (in order).

expectedHeaderReceived(...)
To define the expected header that should be
received

expectsAscending(Expression)
To add an expectation that messages are received in
order, using the givenExpressionto compare
messages.

expectsDescending(Expression)
To add an expectation that messages are received in
order, using the givenExpressionto compare
messages.

expectsNoDuplicates(Expression)

To add an expectation that no duplicate messages
are received; using anExpressionto calculate a
unique identifier for each message. This could be
something like theJMSMessageID if using JMS, or
some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody" , "secondMessageBody" ,
"thirdMessageBody");

Adding expectations to specific messages

In addition, you can use themessage(int messageIndex)method to add assertions about a
specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-
based indexing likejava.util.List), you can use the following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

COOKBOOK 60

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
https://cwiki.apache.org/confluence/display/CAMEL/Expression
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)

There are some examples of the Mock endpoint in use in thecamel-core processor tests.

A Spring Example

First, here's thespring.xml file

<camelContext xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "file:src/test/data?noop=true" />
<filter>

<xpath> /person/city = 'London' </xpath>
<to uri= "mock:matched" />

</filter>
</route>

</camelContext>

<bean id= "myBean" class= "org.apache.camel.spring.mock.MyAssertions" scope= "singleton" />

As you can see, it defines a simple routing rule which consumes messages from the localsrc/
test/data directory. Thenoop flag just means not to delete or move the file after its been
processed.

Also note we instantiate a bean calledmyBean , here is thesource of the MyAssertions
bean.

public class MyAssertions implements InitializingBean {
@EndpointInject(uri = "mock:matched")
private MockEndpoint matched;

@EndpointInject(uri = "mock:notMatched")
private MockEndpoint notMatched;

public void afterPropertiesSet() throws Exception {
// lets add some expectations
matched.expectedMessageCount(1);
notMatched.expectedMessageCount(0);

}

public void assertEndpointsValid() throws Exception {
// now lets perform some assertions that the test worked as we expect
Assert.assertNotNull("Should have a matched endpoint" , matched);
Assert.assertNotNull("Should have a notMatched endpoint" , notMatched);
MockEndpoint.assertIsSatisfied(matched, notMatched);

}
}

The bean is injected with a bunch of Mock endpoints using the@EndpointInject annotation, it
then sets a bunch of expectations on startup (using Spring'sInitializingBean interface
andafterPropertiesSet() method) before theCamelContext starts up.

61 COOKBOOK

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/acamel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/acamel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Then in our test case (which could be JUnit or TesNG) we lookupmyBean in Spring (or
have it injected into our test) and then invoke theassertEndpointsValid() method on
it to verify that the mock endpoints have their assertions met. You could then inspect the
message exchanges that were delivered to any of the endpoints using the
getReceivedExchanges()method on the Mock endpoint and perform further assertions or
debug logging.

Here is theactual JUnit test case we use.

See Also

¥ Configuring Camel
¥ Component
¥ Endpoint
¥ Getting Started
¥ Spring Testing

TESTING

Testing is a crucial activity in any piece of software development or integration. Typically Camel
Riders use various differenttechnologieswired together in a variety ofpatternswith different
expression languagestogether with different forms ofBean IntegrationandDependency

Injectionso its very easy for things to go wrong! . Testing is the crucial weapon to ensure
that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework
you use (JUnit 3.x, 4.x or TestNG). However the Camel project has tried to make the testing
of Camel as easy and powerful as possible so we have introduced the following features.

Testing mechanisms

The following mechanisms are supported

Name Description

Camel
Test

is a library letting you easily create Camel test cases using a single Java class for all
your configuration and routing without usingSpringor Guicefor Dependency
Injectionwhich does not require an in depth knowledge of Spring+SpringTest or
Guice

Spring
Testing

uses Spring Test together with either XML or Java Config to dependency inject
your test classes

Guice usesGuiceto dependency inject your test classes

In all approaches the test classes look pretty much the same in that they all reuse theCamel
binding and injection annotations.

COOKBOOK 62

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Dependency+Injection
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Camel Test Example

Here is theCamel Testexample.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

public void testSendMatchingMessage() throws Exception {
String expectedBody = "<matched/>" ;

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo" , "bar");

resultEndpoint.assertIsSatisfied();
}

public void testSendNotMatchingMessage() throws Exception {
resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>" , "foo" , "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

Notice how it derives from the Camel helper classCamelTestSupport but has no Spring or
Guice dependency injection configuration but instead overrides thecreateRouteBuilder()
method.

Spring Test with XML Config Example

Here is theSpring Testingexample using XML Config.

63 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

@ContextConfiguration
public class FilterTest extends AbstractJUnit38SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>" ;

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo" , "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>" , "foo" , "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

Notice that we use@DirtiesContext on the test methods to forceSpring Testingto
automatically reload theCamelContextafter each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in
another test method).

Also notice the use of@ContextConfiguration to indicate that by default we should
look for the FilterTest-context.xml on the classpathto configure the test case which looks like
this

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context ="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.5.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "direct:start" />

COOKBOOK 64

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

<filter>
<xpath> $foo = 'bar' </xpath>
<to uri= "mock:result" />

</filter>
</route>

</camelContext>

</beans>

Spring Test with Java Config Example

Here is theSpring Testingexample using Java Config. For more information seeSpring Java
Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig" ,
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>" ;

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo" , "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>" , "foo" , "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

65 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML file and instead
the nestedContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote forSJC-238to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive from
SingleRouteCamelConfiguration which is a helper Spring Java Config class which will
configure the CamelContext for us and then register the RouteBuilder we create.

Testing endpoints

Camel provides a number of endpoints which can make testing easier.

Name Description

DataSet
For load & soak testing this endpoint provides a way to create huge numbers of
messages for sending toComponentsand asserting that they are consumed
correctly

Mock
For testing routes and mediation rules using mocks and allowing assertions to be
added to an endpoint

Test
Creates aMockendpoint which expects to receive all the message bodies that
could be polled from the given underlying endpoint

The main endpoint is theMockendpoint which allows expectations to be added to different
endpoints; you can then run your tests and assert that your expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for
example to unit test a transformation route rather than performing a full integration test) then
the following endpoints can be useful.

Name Description

COOKBOOK 66

http://jira.springframework.org/browse/SJC-238
https://cwiki.apache.org/confluence/display/CAMEL/DataSet
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock

Direct
Direct invocation of the consumer from the producer so that single threaded
(non-SEDA) in VM invocation is performed which can be useful to mock out
physical transports

SEDA
Delivers messages asynchonously to consumers via a
java.util.concurrent.BlockingQueuewhich is good for testing asynchronous
transports

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will
not useMocketc. For example you may have a production ready route which you want to test
with some 3rd party API which sends messages into this route.

Name Description

NotifyBuilder
Allows you to be notified when a certain condition has occurred. For
example when the route has completed 5 messages. You can build complex
expressions to match your criteria when to be notified.

AdviceWith
Allows you toadvice or enhance an existing route using aRouteBuilder
style. For example you can add interceptors to intercept sending outgoing
messages to assert those messages are as expected.

CAMEL TEST

As a simple alternative to usingSpring Testingor Guicethe camel-test module was
introduced into the Camel 2.0 trunk so you can perform powerfulTestingof your Enterprise
Integration Patternseasily.

Adding to your pom.xml

To get started using Camel Test you will need to add an entry to your pom.xml

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-test </artifactId>
<version> ${camel-version} </version>
<scope> test </scope>

</dependency>

You might also want to add commons-logging and log4j to ensure nice logging messages (and
maybe adding alog4j.propertiesfile into your src/test/resources directory).

67 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/NotifyBuilder
https://cwiki.apache.org/confluence/display/CAMEL/AdviceWith
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties

<dependency>
<groupId> commons-logging </groupId>
<artifactId> commons-logging </artifactId>
<scope> test </scope>

</dependency>
<dependency>

<groupId> log4j </groupId>
<artifactId> log4j </artifactId>
<scope> test </scope>

</dependency>

Writing your test

You firstly need to derive from the classCamelTestSupport and typically you will need to
override thecreateRouteBuilder() method to create routes to be tested.

Here is anexample.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

public void testSendMatchingMessage() throws Exception {
String expectedBody = "<matched/>" ;

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo" , "bar");

resultEndpoint.assertIsSatisfied();
}

public void testSendNotMatchingMessage() throws Exception {
resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>" , "foo" , "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

COOKBOOK 68

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

};
}

}

Notice how you can use the variousCamel binding and injection annotationsto inject individual
Endpointobjects - particularly theMock endpointswhich are very useful forTesting. Also you
can injectproducer objects such as ProducerTemplate or some application code interfacefor
sending messages or invoking services.

JNDI

Camel uses aRegistryto allow you to configureComponentor Endpointinstances orBeans
used in your routes. If you are not usingSpringor [OSGi] then JNDIis used as the default
registry implementation.

So you will also need to create ajndi.properties file in yoursrc/test/resources
directory so that there is a default registry available to initialise theCamelContext.

Here isan example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

See Also

¥ Testing
¥ Mock

SPRING TESTING

Testingis a crucial part of any development or integration work. The Spring Framework offers
a number of features that makes it easy to test while using Spring for Inversion of Control
which works with JUnit 3.x, JUnit 4.x orTestNG.

We can reuse Spring for IoC and the CamelMockandTestendpoints to create
sophisticated integration tests that are easy to run and debug inside your IDE.

For example here is a simple unit test

import org.apache.camel.CamelContext;
import org.apache.camel.component.mock.MockEndpoint;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests;

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

69 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/JNDI
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties
https://cwiki.apache.org/confluence/display/CAMEL/Testing
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Testing
http://testng.org
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test

@Autowired
protected CamelContext camelContext;

public void testMocksAreValid() throws Exception {
MockEndpoint.assertIsSatisfied(camelContext);

}
}

This test will load a Spring XML configuration file calledMyCamelTest-context.xml from
the classpath in the same package structure as the MyCamelTest class and initialize it along with
any Camel routes we define inside it, then inject theCamelContextinstance into our test case.

For instance, like this maven folder layout:

src/main/java/com/mycompany/MyCamelTest.class
src/main/resources/com/mycompany/MyCamelTest-context.xml

You can overload the methodcreateApplicationContext to provide the Spring
ApplicationContext that isn't following the above default. For instance:

protected AbstractXmlApplicationContext createApplicationContext() {
return new ClassPathXmlApplicationContext("/config/MySpringConfig.xml");

}

Then the test method will then run which invokes the
MockEndpoint.assertIsSatisfied(camelContext) methodwhich asserts that all of theMockand
Testendpoints have their expectations met.

xml}

Spring Test with Java Config Example

You can completely avoid using an XML configuration file by usingSpring Java Config.

Here is anexample using Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig" ,
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

COOKBOOK 70

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>" ;

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo" , "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>" , "foo" , "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML file and instead
the nestedContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote forSJC-238to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Adding more Mock expectations

If you wish to programmatically add any new assertions to your test you can easily do so with
the following. Notice how we use @EndpointInject to inject a Camel endpoint into our code
then theMockAPI to add an expectation on a specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

71 COOKBOOK

http://jira.springframework.org/browse/SJC-238
https://cwiki.apache.org/confluence/display/CAMEL/Mock

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations
foo.message(0).header("bar").isEqualTo("ABC");

MockEndpoint.assertIsSatisfied(camelContext);
}

}

Further processing the received messages

Sometimes once aMockendpoint has received some messages you want to then process them
further to add further assertions that your test case worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations...

MockEndpoint.assertIsSatisfied(camelContext);

// now lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges();
for (Exchange exchange : list) {

Message in = exchange.getIn();
...

}
}

}

Sending and receiving messages

It might be that theEnterprise Integration Patternsyou have defined in eitherSpringXML or
using the JavaDSLdo all of the sending and receiving and you might just work with theMock

COOKBOOK 72

https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Mock

endpoints as described above. However sometimes in a test case its useful to explicitly send or
receive messages directly.

To send or receive messages you should use theBean Integrationmechanism. For example
to send messages inject a ProducerTemplate using the @EndpointInject annotation then call the
various send methods on this object to send a message to an endpoint. To consume messages
use the @MessageDriven annotation on a method to have the method invoked when a message
is received.

public class Foo {
@EndpointInject(uri= "activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
// lets send a message!
producer.sendBody("<hello>world!</hello>");

}

// lets consume messages from the 'cheese' queue
@MessageDriven(uri= "activemq:cheese")
public void onCheese(String name) {

...
}

}

See Also

¥ a real example test case using Mock and Springalong with itsSpring XML
¥ Bean Integration
¥ Mockendpoint
¥ Testendpoint

CAMEL GUICE

As of 1.5 we now have support forGoogle Guiceas a dependency injection framework. To use
it just be dependent oncamel-guice.jar which also depends onthe following jars.

Dependency Injecting Camel with Guice

TheGuiceCamelContextis designed to work nicely inside Guice. You then need to bind it
using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules you can use if you
wish - or you can bind the GuiceCamelContext yourself in your own module.

¥ CamelModuleis the base module which binds the GuiceCamelContext but leaves it
up you to bind the RouteBuilder instances

73 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
http://code.google.com/p/google-guice/
http://activemq.apache.org/camel/maven/camel-guice/dependencies.html
http://activemq.apache.org/camel/maven/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html
http://activemq.apache.org/camel/maven/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html

¥ CamelModuleWithRouteTypesextends CamelModule so that in the constructor of
the module you specify the RouteBuilder classes or instances to use

¥ CamelModuleWithMatchingRoutesextends CamelModule so that all bound
RouteBuilder instances will be injected into the CamelContext or you can supply an
optional Matcher to find RouteBuilder instances matching some kind of predicate.

So you can specify the exactRouteBuilderinstances you want

Injector injector = Guice.createInjector(new
CamelModuleWithRouteTypes(MyRouteBuilder.class, AnotherRouteBuilder.class));
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

Or inject them all

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes());
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any other dependent
objects.

Bootstrapping with JNDI

A common pattern used in J2EE is to bootstrap your application or root objects by looking
them up in JNDI. This has long been the approach when working with JMS for example -
looking up the JMS ConnectionFactory in JNDI for example.

You can follow a similar pattern with Guice using theGuiceyFruit JNDI Providerwhich lets
you bootstrap Guice from ajndi.properties file which can include the Guice Modules to
create along with environment specific properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify the jndi
properties file name in the Guice Main with option -j or -jndiProperties with the properties file
location to let Guice Main to load right jndi properties file.

Configuring Component, Endpoint or RouteBuilder instances

You can useGuiceto dependency inject whatever objects you need to create, be it an
Endpoint, Component, RouteBuilderor arbitrary bean used within a route.

The easiest way to do this is to create your own Guice Module class which extends one of
the above module classes and add a provider method for each object you wish to create. A
provider method is annotated with@Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

COOKBOOK 74

http://activemq.apache.org/camel/maven/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://activemq.apache.org/camel/maven/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
https://cwiki.apache.org/confluence/display/CAMEL/Guice
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

@Provides
@JndiBind("jms")
JmsComponent jms(@Named("activemq.brokerURL") String brokerUrl) {

return JmsComponent.jmsComponent(new ActiveMQConnectionFactory(brokerUrl));
}

}

You can optionally annotate the method with@JndiBind to bind the object to JNDI at some
name if the object is a component, endpoint or bean you wish to refer to by name in your
routes.

You can inject any environment specific properties (such as URLs, machine names,
usernames/passwords and so forth) from the jndi.properties file easily using the@Named
annotation as shown above. This allows most of your configuration to be in Java code which is
typesafe and easily refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development, testing, production etc.

Creating multiple RouteBuilder instances per type

It is sometimes useful to create multiple instances of a particularRouteBuilderwith different
configurations.

To do this just create multiple provider methods for each configuration; or create a single
provider method that returns a collection of RouteBuilder instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JndiBind("foo")
Collection<RouteBuilder> foo(@Named("fooUrl") String fooUrl) {

return Lists.newArrayList(new MyRouteBuilder(fooUrl), new
MyRouteBuilder("activemq:CheeseQueue"));

}
}

See Also

¥ there are a number ofExamplesyou can look at to see Guice and Camel being used
such asGuice JMS Example

¥ Guice Maven Pluginfor running your Guice based routes via Maven

75 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Guice+JMS+Example
https://cwiki.apache.org/confluence/display/CAMEL/Guice+Maven+Plugin

TEMPLATING

When you are testing distributed systems its a very common requirement to have to stub out
certain external systems with some stub so that you can test other parts of the system until a
specific system is available or written etc.

A great way to do this is using some kind of Template system to generate responses to
requests generating a dynamic message using a mostly-static body.

There are a number of templating components you could use
¥ Freemarker
¥ Scalate
¥ StringTemplate
¥ Velocity
¥ XQuery
¥ XSLT

Example

Here's a simple example showing how we can respond to InOut requests on theMy.Queue
queue onActiveMQwith a template generated response. The reply would be sent back to the
JMSReplyTo Destination.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

See Also

¥ Mock for details of mock endpoint testing (as opposed to template based stubs).

DATABASE

Camel can work with databases in a number of different ways. This document tries to outline
the most common approaches.

Database endpoints

Camel provides a number of different endpoints for working with databases

COOKBOOK 76

https://cwiki.apache.org/confluence/display/CAMEL/Freemarker
https://cwiki.apache.org/confluence/display/CAMEL/Scalate
https://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/XSLT
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Mock

¥ JPAfor working with hibernate, openjpa or toplink. When consuming from the
endpoints entity beans are read (and deleted/updated to mark as processed) then
when producing to the endpoints they are written to the database (via insert/update).

¥ iBATISsimilar to the above but usingApache iBATIS
¥ JDBCsimilar though using explicit SQL

Database pattern implementations

Various patterns can work with databases as follows
¥ Idempotent Consumer
¥ Aggregator
¥ BAMfor business activity monitoring

PARALLEL PROCESSING AND ORDERING

It is a common requirement to want to use parallel processing of messages for throughput and
load balancing, while at the same time process certain kinds of messages in order.

How to achieve parallel processing

You can send messages to a number of CamelComponentsto achieve parallel processing and
load balancing such as

¥ SEDAfor in-JVM load balancing across a thread pool
¥ ActiveMQor JMSfor distributed load balancing and parallel processing
¥ JPAfor using the database as a poor mans message broker

When processing messages concurrently, you should consider ordering and concurrency issues.
These are described below

Concurrency issues

Note that there is no concurrency or locking issue when usingActiveMQ, JMSor SEDAby
design; they are designed for highly concurrent use. However there are possible concurrency
issues in theProcessorof the messages i.e. what the processor does with the message?

For example if a processor of a message transfers money from one account to another
account; you probably want to use a database with pessimistic locking to ensure that operation
takes place atomically.

77 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator
https://cwiki.apache.org/confluence/display/CAMEL/BAM
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/Processor

Ordering issues

As soon as you send multiple messages to different threads or processes you will end up with
an unknown ordering across the entire message stream as each thread is going to process
messages concurrently.

For many use cases the order of messages is not too important. However for some
applications this can be crucial. e.g. if a customer submits a purchase order version 1, then
amends it and sends version 2; you don't want to process the first version last (so that you
loose the update). YourProcessormight be clever enough to ignore old messages. If not you
need to preserve order.

Recommendations

This topic is large and diverse with lots of different requirements; but from a high level here are
our recommendations on parallel processing, ordering and concurrency

¥ for distributed locking, use a database by default, they are very good at it
¥ to preserve ordering across a JMS queue consider usingExclusive Consumersin the

ActiveMQcomponent
¥ even better areMessage Groupswhich allows you to preserve ordering across

messages while still offering parallelisation via theJMSXGrouopID header to
determine what can be parallelized

¥ if you receive messages out of order you could use theResequencerto put them
back together again

A good rule of thumb to help reduce ordering problems is to make sure each single can be
processed as an atomic unit in parallel (either without concurrency issues or using say, database
locking); or if it can't, use aMessage Groupto relate the messages together which need to be
processed in order by a single thread.

Using Message Groups with Camel

To use a Message Group with Camel you just need to add a header to the output JMS message
based on some kind ofCorrelation Identifierto correlate messages which should be processed
in order by a single thread - so that things which don't correlate together can be processed
concurrently.

For example the following code shows how to create a message group using an XPath
expression taking an invoice's product code as theCorrelation Identifier

from("activemq:a").setHeader("JMSXGroupID" , xpath("/invoice/
productCode")).to("activemq:b");

You can of course use theXml Configurationif you prefer

COOKBOOK 78

https://cwiki.apache.org/confluence/display/CAMEL/Processor
http://activemq.apache.org/exclusive-consumer.html
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/message-groups.html
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
http://activemq.apache.org/message-groups.html
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration

ASYNCHRONOUS PROCESSING

Overview

Camel supports a more complex asynchronous processing model. The asynchronous
processors implement the AsyncProcessor interface which is derived from the more
synchronous Processor interface. There are advantages and disadvantages when using
asynchronous processing when compared to using the standard synchronous processing model.

Advantages:
¥ Processing routes that are composed fully of asynchronous processors do not use up

threads waiting for processors to complete on blocking calls. This can increase the
scalability of your system by reducing the number of threads needed to process the
same workload.

¥ Processing routes can be broken up intoSEDAprocessing stages where different
thread pools can process the different stages. This means that your routes can be
processed concurrently.

Disadvantages:
¥ Implementing asynchronous processors is more complex than implementing the

synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple
synchronous APIs unless you identify a performance of scalability requirement that dictates
otherwise. A Processor whose process() method blocks for a long time would be good
candidates for being converted into an asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
boolean process(Exchange exchange, AsyncCallback callback);

}

The AsyncProcessor defines a singleprocess() method which is very similar to it's
synchronous Processor.process() brethren. Here are the differences:

¥ A non-null AsyncCallbackMUST be supplied which will be notified when the
exchange processing is completed.

¥ It MUST not throw any exceptions that occurred while processing the exchange.
Any such exceptions must be stored on the exchange's Exception property.

¥ It MUST know if it will complete the processing synchronously or asynchronously.
The method will returntrue if it does complete synchronously, otherwise it returns
false .

79 COOKBOOK

https://cwiki.apache.org/confluence/display/CAMEL/SEDA

Supported versions
The information on this page applies for the Camel 1.x and Camel 2.4 onwards. In
Camel 1.x the asynchronous processing is only implemented forJBIwhere as in
Camel 2.4 onwards we have implemented it in many other areas.

¥ When the processor has completed processing the exchange, it must call the
callback.done(boolean sync) method. The sync parameterMUST match
the value returned by theprocess() method.

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the AsyncProcessor
interface, can be coerced to implement the AsyncProcessor interface. This is usually done when
you are implementing a Camel component consumer that supports asynchronous completion of
the exchanges that it is pushing through the Camel routes. Consumers are provided a
Processor object when created. All Processor object can be coerced to a AsyncProcessor using
the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start
with the consumer implementation making use of the asynchronous processing API. If it called
the synchronous process() method instead, the consumer's thread would be forced to be
blocked and in use for the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous API, it does not
mean that the processing will take place asynchronously. It only allows the possibility that it can
be done without tying up the caller's thread. If the processing happens asynchronously is
dependent on the configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback class instance which
can reference the exchange object that was declared final. This allows it to finish up any post
processing that is needed when the called processor is done processing the exchange. See
below for an example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {

public void done(boolean sync) {

if (exchange.isFailed()) {
... // do failure processing.. perhaps rollback etc.

} else {

COOKBOOK 80

https://cwiki.apache.org/confluence/display/CAMEL/JBI

... // processing completed successfully, finish up
// perhaps commit etc.

}
}

});

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the AsyncProcessor, and have seen
how to make use of it when calling processors, lets looks a what the thread model/sequence
scenarios will look like for some sample routes.

The Jetty component's consumers support async processing by using continuations. Suffice
to say it can take a http request and pass it to a camel route for async processing. If the
processing is indeed async, it uses Jetty continuation so that the http request is 'parked' and the
thread is released. Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park' the request. Jetty un-parks the request, the http
response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async".
This is why AsyncProcessor.process() implementations MUST accurately report if request is
completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and implement the
AsyncProcessor interface. A route that uses both the jetty asynchronous consumer and the jhc
asynchronous producer will be a fully asynchronous route and has some nice attributes that can
be seen if we take a look at a sequence diagram of the processing route. For the route:

from("jetty:http: //localhost:8080/service").to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

81 COOKBOOK

The diagram simplifies things by making it looks like processors implement the
AsyncCallback interface when in reality the AsyncCallback interfaces are inline inner classes, but
it illustrates the processing flow and shows how 2 separate threads are used to complete the
processing of the original http request. The first thread is synchronous up until processing hits
the jhc producer which issues the http request. It then reports that the exchange processing
will complete async since it will use a NIO to complete getting the response back. Once the jhc
component has received a full response it usesAsyncCallback.done() method to notify
the caller. These callback notifications continue up until it reaches the original jetty consumer
which then un-parks the http request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous
processors/components. The pipeline processor is the backbone of a Camel processing route. It
glues all the processing steps together. It is implemented as an AsyncProcessor and supports
interleaving synchronous and asynchronous processors as the processing steps in the pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation, both of which
are synchronous processors. Lets say we want to load file from the data/in directory validate
them with the MyValidator() processor, Transform them into JPA java objects using
MyTransformation and then insert them into the database using theJPAcomponent. Lets say
that the transformation process takes quite a bit of time and we want to allocate 20 threads to
do parallel transformations of the input files. The solution is to make use of the thread
processor. The thread is AsyncProcessor that forces subsequent processing in asynchronous
thread from a thread pool.

The route might look like:

COOKBOOK 82

https://cwiki.apache.org/confluence/display/CAMEL/JPA

from("file:data/in").process(new MyValidator()).thread(20).process(new
MyTransformation()).to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the 2nd part of the thread sequence.

Staying synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things
synchronously. This is due to the fact that starting up an asynchronous thread and doing a
context switch to it adds a little bit of of overhead. So it is generally encouraged that
AsyncProcessors do as much work as they can synchronously. When they get to a step that
would block for a long time, at that point they should return from the process call and let the
caller know that it will be completing the call asynchronously.

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS

ActiveMQsupportsVirtual Topicssince durable topic subscriptions kinda suck (seethis page
for more detail) mostly since they don't supportCompeting Consumers.

Most folks want Queue semantics when consuming messages; so that you can support
Competing Consumersfor load balancing along with things likeMessage GroupsandExclusive
Consumersto preserve ordering or partition the queue across consumers.

83 COOKBOOK

http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
https://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html

However if you are using another JMS provider you can implement Virtual Topics by

switching to ActiveMQ or you can use the following Camel pattern.

First here's the ActiveMQ approach.
¥ send toactivemq:topic:VirtualTopic.Orders
¥ for consumer A consume fromactivemq:Consumer.A.VirtualTopic.Orders

When using another message broker use the following pattern
¥ send tojms:Orders
¥ add this route with a to() for each logical durable topic subscriber

from("jms:Orders").to("jms:Consumer.A" , "jms:Consumer.B" , ...);

¥ for consumer A consume fromjms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF

In CXF you offer or consume a webservice by defining itÂ´s address. The first part of the
address specifies the protocol to use. For example address="http://localhost:90000" in an
endpoint configuration means your service will be offered using the http protocol on port 9000
of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel".
So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address
to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which implements theCXF
transport APIwith the Camel core library. This allows you to use camelÂ´s routing engine and
integration patterns support smoothly together with your CXF services.

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER

To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You
can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring

You can use the following snippet in your applicationcontext if you want to configure anything
special. If you only want to activate the camel transport you do not have to do anything in your
application context. As soon as you include the camel-cxf jar in your app cxf will scan the jar
and load a CamelTransportFactory for you.

<bean class= "org.apache.camel.component.cxf.transport.CamelTransportFactory" >
<property name= "bus" ref= "cxf" />
<property name= "camelContext" ref= "camelContext" />
<!-- checkException new added in Camel 2.1 and Camel 1.6.2 -->

COOKBOOK 84

http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports
http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

<!-- If checkException is true , CamelDestination will check the outMessage's
exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->

<property name= "checkException" value= "true" />
<property name= "transportIds" >

<list>
<value> http://cxf.apache.org/transports/camel </value>

</list>
</property>

</bean>

Integrating the Camel Transport in a programmatic way

Camel transport provides a setContext method that you could use to set the Camel context
into the transport factory. If you want this factory take effect, you need to register the factory
into the CXF bus. Here is a full example for you.

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;
...

BusFactory bf = BusFactory.newInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
camelTransportFactory.setCamelContext(context)
// register the conduit initiator
ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// register the destination factory
DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// set or bus as the default bus for cxf
BusFactory.setDefaultBus(bus);

CONFIGURE THE DESTINATION AND CONDUIT

Namespace

The elements used to configure an Camel transport endpoint are defined in the namespace
http://cxf.apache.org/transports/camel . It is commonly referred to using the
prefix camel . In order to use the Camel transport configuration elements you will need to add

85 COOKBOOK

http://cxf.apache.org/transports/camel

the lines shown below to the beans element of your endpoint's configuration file. In addition,
you will need to add the configuration elements' namespace to thexsi:schemaLocation
attribute.

Listing 4.Listing 4. Adding the Configuration NamespaceAdding the Configuration Namespace

<beans ...
xmlns:camel="http: //cxf.apache.org/transports/camel
...
xsi:schemaLocation="...

http: //cxf.apache.org/transports/camel
http: //cxf.apache.org/transports/camel.xsd

...>

The destination element

You configure an Camel transport server endpoint using thecamel:destination element
and its children. Thecamel:destination element takes a single attribute,name, the
specifies the WSDL port element that corresponds to the endpoint. The value for thename
attribute takes the formportQName.camel-destination . The example below shows the
camel:destination element that would be used to add configuration for an endpoint that
was specified by the WSDL fragment<port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net .

Listing 5.Listing 5. camel:destination Elementcamel:destination Element

...
<camel:destination name="{http: //widgets/

widgetvendor.net}widgetSOAPPort.http-destination>
<camelContext id= "context" xmlns= "http: //activemq.apache.org/camel/schema/spring" >

<route>
<from uri= "direct:EndpointC" />
<to uri= "direct:EndpointD" />

</route>
</camelContext>

</camel:destination>
...

Thecamel:destination element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel-
spring:camelContext

You can specify the camel context in the camel destination

COOKBOOK 86

http://widgets.widgetvendor.net

camel:camelContextRef
The camel context id which you want inject into the camel
destination

The conduit element

You configure an Camel transport client using thecamel:conduit element and its children.
Thecamel:conduit element takes a single attribute,name, that specifies the WSDL port
element that corresponds to the endpoint. The value for thename attribute takes the form
portQName.camel-conduit . For example, the code below shows thecamel:conduit
element that would be used to add configuration for an endpoint that was specified by the
WSDL fragment<port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net .

Listing 6.Listing 6. http-conf:conduit Elementhttp-conf:conduit Element

...
<camelContext id= "conduit_context" xmlns= "http://activemq.apache.org/camel/schema/

spring" >
<route>

<from uri= "direct:EndpointA" />
<to uri= "direct:EndpointB" />

</route>
</camelContext>

<camel:conduit name= "{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit" >
<camel:camelContextRef> conduit_context </camel:camelContextRef>

</camel:conduit>

<camel:conduit name= "*.camel-conduit" >
<!-- you can also using the wild card to specify the camel-conduit that you want to

configure -->
...

</camel:conduit>
...

Thecamel:conduit element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel-
spring:camelContext

You can specify the camel context in the camel conduit

camel:camelContextRef
The camel context id which you want inject into the
camel conduit

87 COOKBOOK

http://widgets.widgetvendor.net

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF

This example show how to use the camel load balance feature in CXF, and you need load the
configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA"
and "camel://direct:EndpointB"

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel ="http://cxf.apache.org/transports/camel"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/

camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<bean id = "roundRobinRef"
class= "org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id= "dest_context" xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "jetty:http://localhost:9091/GreeterContext/GreeterPort" />
<loadBalance ref= "roundRobinRef" >

<to uri= "direct:EndpointA" />
<to uri= "direct:EndpointB" />

</loadBalance>
</route>

</camelContext>

<!-- Inject the camel context to the Camel transport's destination -->
<camel:destination name= "{http://apache.org/

hello_world_soap_http}CamelPort.camel-destination" >
<camel:camelContextRef> dest_context </camel:camelContextRef>

</camel:destination>

</beans>

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF

Better JMS Transport for CXF Webservice using Apache Camel

COOKBOOK 88

https://cwiki.apache.org/confluence/display/CAMEL/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel

Introduction

When sending anExchangeto an Endpointyou can either use aRouteor a ProducerTemplate.
This works fine in many scenarios. However you may need to guarantee that an exchange is
delivered to the same endpoint that you delivered a previous exchange on. For example in the
case of delivering a batch of exchanges to aMINA socket you may need to ensure that they are
all delivered through the same socket connection. Furthermore once the batch of exchanges
have been delivered the protocol requirements may be such that you are responsible for
closing the socket.
Using a Producer

To achieve fine grained control over sending exchanges you will need to program directly to a
Producer. Your code will look similar to:

CamelContext camelContext = ...

// Obtain an endpoint and create the producer we will be using.
Endpoint endpoint = camelContext.getEndpoint("someuri:etc");
Producer producer = endpoint.createProducer();
producer.start();

try {
// For each message to send...
Object requestMessage = ...
Exchange exchangeToSend = producer.createExchange();
exchangeToSend().setBody(requestMessage);
producer.process(exchangeToSend);
...

} finally {
// Tidy the producer up.
producer.stop();

}

In the case of using Apache MINA the producer.stop() invocation will cause the socket to be
closed.

89 INTRODUCTION

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
https://cwiki.apache.org/confluence/display/CAMEL/MINA

Tutorials

There now follows the documentation on camel tutorials
¥ OAuth Tutorial

This tutorial demonstrates how to implement OAuth for a web application with
Camel'sgauthcomponent. The sample application of this tutorial is also online at
http://gauthcloud.appspot.com/

¥ Tutorial for Camel on Google App Engine
This tutorial demonstrates the usage of theCamel Components for Google App
Engine. The sample application of this tutorial is also online at
http://camelcloud.appspot.com/

¥ Tutorial on Spring Remoting with JMS
This tutorial is focused on different techniques with Camel for Client-Server
communication.

¥ Report Incident - This tutorial introduces Camel steadily and is based on a real life
integration problem
This is a very long tutorial beginning from the start; its for entry level to Camel. Its
based on a real life integration, showing how Camel can be introduced in an existing
solution. We do this in baby steps. The tutorial is currently work in progress, so
check it out from time to time. The tutorial explains some of the inner building blocks
Camel uses under the covers. This is good knowledge to have when you start using
Camel on a higher abstract level where it can do wonders in a few lines of routing
DSL.

¥ Using Camel with ServiceMixa tutorial on using Camel insideApache ServiceMix.
¥ Better JMS Transport for CXF Webservice using Apache CamelDescribes how to

use the Camel Transport for CXF to attach a CXF Webservice to a JMS Queue
¥ Tutorial how to use good old Axis 1.4 with Camel

This tutorial shows that Camel does work with the good old frameworks such as
AXIS that is/was widely used for WebService.

¥ Tutorial on using Camel in a Web Application
This tutorial gives an overview of how to use Camel inside Tomcat, Jetty or any other
servlet engine

¥ Tutorial on Camel 1.4 for Integration
Another real-life scenario. The company sells widgets, with a somewhat unique
business process (their customers periodically report what they've purchased in order
to get billed). However every customer uses a different data format and protocol.
This tutorial goes through the process of integrating (and testing!) several customers
and their electronic reporting of the widgets they've bought, along with the company's
response.

TUTORIALS 90

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-OAuth
https://cwiki.apache.org/confluence/display/CAMEL/gauth
http://gauthcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+for+Camel+on+Google+App+Engine
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://camelcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
https://cwiki.apache.org/confluence/display/CAMEL/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-AXIS-Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+on+using+Camel+in+a+Web+Application
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Business-Partners

¥ Tutorial how to build a Service Oriented Architecture using Camel with OSGI -
Updated 20/11/2009
The tutorial has been designed in two parts.The first partintroduces basic concept to
create a simple SOA solution using Camel and OSGI and deploy it in a OSGI Server
like Apache Felix Karaf and Spring DM Server while thesecondextends the
ReportIncident tutorialpart 4 to show How we can separate the different layers
(domain, service, ...) of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI bundles.

¥ Examples
While not actual tutorials you might find working through the source of the various
Examplesuseful

TUTORIAL ON SPRING REMOTING WITH JMS

PREFACE

This tutorial aims to guide the reader through the stages of creating a project which uses Camel
to facilitate the routing of messages from a JMS queue to aSpringservice. The route works in a
synchronous fashion returning a response to the client.

¥ Tutorial on Spring Remoting with JMS
¥ Preface
¥ Prerequisites
¥ Distribution
¥ About
¥ Create the Camel Project
¥ Update the POM with Dependencies
¥ Writing the Server
¥ Create the Spring Service
¥ Define the Camel Routes
¥ Configure Spring
¥ AOP Enabled Server
¥ Run the Server
¥ Writing The Clients
¥ Client Using The ProducerTemplate
¥ Client Using Spring Remoting
¥ Client Using Message Endpoint EIP Pattern
¥ Run the Clients
¥ Using the Camel Maven Plugin
¥ Using Camel JMX
¥ See Also

91 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part1
https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.springramework.org

Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

PREREQUISITES

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

DISTRIBUTION

This sample is distributed with the Camel distribution asexamples/camel-example-
spring-jms .

ABOUT

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless
integrated with Spring to leverage the best of both worlds. This sample is client server solution
using JMS messaging as the transport. The sample has two flavors of servers and also for clients
demonstrating different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that
does computations on the received message and returns a response.
The EIP patterns used in this sample are:

Pattern Description

Message
Channel

We need a channel so the Clients can communicate with the server.

Message The information is exchanged using the Camel Message interface.

Message
Translator

This is where Camel shines as the message exchange between the Server and
the Clients are text based strings with numbers. However our business service
uses int for numbers. So Camel can do the message translation automatically.

Message
Endpoint

It should be easy to send messages to the Server from the the clients. This is
archived with Camels powerful Endpoint pattern that even can be more
powerful combined with Spring remoting. The tutorial have clients using each
kind of technique for this.

Point to
Point
Channel

We using JMS queues so there are only one receive of the message exchange

TUTORIALS 92

https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel

Event
Driven
Consumer

Yes the JMS broker is of course event driven and only reacts when the client
sends a message to the server.

We use the following Camel components:

Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server side

Bean
We use the bean binding to easily route the messages to our business
service. This is a very powerful component in Camel.

File In the AOP enabled Server we store audit trails as files.

JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, its spring, jms components and
finally ActiveMQ as the message broker.

<!-- required by both client and server -->
<dependency>

<groupId> org.apache.camel </groupId>
<artifactId> camel-core </artifactId>

</dependency>
<dependency>

<groupId> org.apache.camel </groupId>
<artifactId> camel-jms </artifactId>

</dependency>
<dependency>

<groupId> org.apache.camel </groupId>
<artifactId> camel-spring </artifactId>

</dependency>
<dependency>

<groupId> org.apache.activemq </groupId>
<artifactId> activemq-camel </artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this dependency:

93 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/JMS

For the purposes of the tutorial a single Maven project will be used for both the
client and server. Ideally you would break your application down into the
appropriate components.

<!-- xbean is required for ActiveMQ broker configuration in the spring xml file -->
<dependency>

<groupId> org.apache.xbean </groupId>
<artifactId> xbean-spring </artifactId>

</dependency>

And dependencies for the AOP enable server example. These dependencies are of course only
needed if you need full blown AOP stuff using AspejctJ with bytecode instrumentation.

<!-- required jars for aspectj AOP support -->
<dependency>

<groupId> org.springframework </groupId>
<artifactId> spring-aop </artifactId>
<version> ${spring-version} </version>

</dependency>
<dependency>

<groupId> org.aspectj </groupId>
<artifactId> aspectjrt </artifactId>
<version> 1.6.2 </version>

</dependency>
<dependency>

<groupId> org.aspectj </groupId>
<artifactId> aspectjweaver </artifactId>
<version> 1.6.2 </version>

</dependency>
<dependency>

<groupId> cglib </groupId>
<artifactId> cglib-nodep </artifactId>
<version> 2.1_3 </version>

</dependency>

WRITING THE SERVER

Create the Spring Service

For this example the Spring service (= our business service) on the server will be a simple
multiplier which trebles in the received value.

TUTORIALS 94

public interface Multiplier {

/**
* Multiplies the given number by a pre-defined constant.
*
* @param originalNumber The number to be multiplied
* @return The result of the multiplication
*/

int multiply(int originalNumber);

}

And the implementation of this service is:

@Service(value = "multiplier")
public class Treble implements Multiplier {

public int multiply(final int originalNumber) {
return originalNumber * 3;

}

}

Notice that this class has been annotated with the @Service spring annotation. This ensures
that this class is registered as a bean in the registry with the given namemultiplier .

Define the Camel Routes

public class ServerRoutes extends RouteBuilder {

@Override
public void configure() throws Exception {

// route from the numbers queue to our business that is a spring bean
registered with the id=multiplier

// Camel will introspect the multiplier bean and find the best candidate of
the method to invoke.

// You can add annotations etc to help Camel find the method to invoke.
// As our multiplier bean only have one method its easy for Camel to find the

method to use.
from("jms:queue:numbers").to("multiplier");

// Camel has several ways to configure the same routing, we have defined some
of them here below

// as above but with the bean: prefix
//from("jms:queue:numbers").to("bean:multiplier");

// beanRef is using explicity bean bindings to lookup the multiplier bean and
invoke the multiply method

95 TUTORIALS

//from("jms:queue:numbers").beanRef("multiplier" , "multiply");

// the same as above but expressed as a URI configuration
//from("activemq:queue:numbers").to("bean:multiplier?methodName=multiply");

}

}

This defines a Camel routefromthe JMS queue namednumbers to the Springbeannamed
multiplier . Camel will create a consumer to the JMS queue which forwards all received
messages onto the the Spring bean, using the method namedmultiply .

Configure Spring

The Spring config file is placed underMETA-INF/spring as this is the default location used
by theCamel Maven Plugin, which we will later use to run our server.
First we need to do the standard scheme declarations in the top. In the camel-server.xml we
are using spring beans as the defaultbean: namespace and springscontext: . For configuring
ActiveMQ we usebroker: and for Camel we of course havecamel: . Notice that we don't
use version numbers for the camel-spring schema. At runtime the schema is resolved in the
Camel bundle. If we use a specific version number such as 1.4 then its IDE friendly as it would
be able to import it and provide smart completion etc. SeeXml Referencefor further details.

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context ="http://www.springframework.org/schema/context"
xmlns:camel ="http://camel.apache.org/schema/spring"
xmlns:broker ="http://activemq.apache.org/schema/core"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context-2.5.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/
activemq-core.xsd">

We use Spring annotations for doing IoC dependencies and its component-scan features comes
to the rescue as it scans for spring annotations in the given package name:

<!-- let Spring do its IoC stuff in this package -->
<context:component-scan base-package= "org.apache.camel.example.server" />

Camel will of course not be less than Spring in this regard so it supports a similar feature for
scanning of Routes. This is configured as shown below.

TUTORIALS 96

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference

Notice that we also have enabled theJMXAgentso we will be able to introspect the Camel
Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->

<camel:camelContext id= "camel" >
<camel:package> org.apache.camel.example.server </camel:package>
<!-- enable JMX connector so we can connect to the server and browse mbeans -->
<!-- Camel will log at INFO level the service URI to use for connecting with

jconsole -->
<camel:jmxAgent id= "agent" createConnector= "true" />

</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to listen on TCP port
61610.

<!-- lets configure the ActiveMQ JMS broker server to listen on TCP 61610 -->
<broker:broker useJmx= "false" persistent= "false" brokerName= "localhost" >

<broker:transportConnectors>
<broker:transportConnector name= "tcp" uri= "tcp://localhost:61610" />

</broker:transportConnectors>
</broker:broker>

As this examples uses JMS then Camel needs aJMS componentthat is connected with the
ActiveMQ broker. This is configured as shown below:

<!-- lets configure the Camel ActiveMQ to use the ActiveMQ broker declared above -->
<bean id= "jms" class= "org.apache.activemq.camel.component.ActiveMQComponent" >

<property name= "brokerURL" value= "tcp://localhost:61610" />
</bean>

Notice: TheJMS componentis configured in standard Spring beans, but the gem is that the
bean id can be referenced from Camel routes - meaning we can do routing using the JMS
Component by just usingjms: prefix in the route URI. What happens is that Camel will find in
the Spring Registry for a bean with the id="jms". Since the bean id can have arbitrary name you
could have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded in this
application.

component-
scan

Defines the package to be scanned for Spring stereotype annotations, in this
case, to load the "multiplier" bean

camel-
context

Defines the package to be scanned for Camel routes. Will find the
ServerRoutes class and create the routes contained within it

jms bean Creates the Camel JMS component

97 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Camel+JMX
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS

AOP Enabled Server

The example has an enhanced Server example that uses fullblown AspejctJ AOP for doing a
audit tracking of invocations of the business service.

We leverage Spring AOP support in the {{camel-server-aop.xml} configuration file. First we
must declare the correct XML schema's to use:

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop ="http://www.springframework.org/schema/aop"
xmlns:camel ="http://camel.apache.org/schema/spring"
xmlns:context ="http://www.springframework.org/schema/context"
xmlns:broker ="http://activemq.apache.org/schema/core"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/aop http://www.springframework.org/
schema/aop/spring-aop-2.5.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context-2.5.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/
activemq-core.xsd">

Then we include all the existing configuration from the normal server example:

<!-- let Spring do its IoC stuff in this package -->
<context:component-scan base-package= "org.apache.camel.example.server" />

<!-- lets configure the ActiveMQ JMS broker server to listen on TCP 61610 -->
<broker:broker useJmx= "false" persistent= "false" brokerName= "localhost" >

<broker:transportConnectors>
<broker:transportConnector name= "tcp" uri= "tcp://localhost:61610" />

</broker:transportConnectors>
</broker:broker>

<!-- lets configure the Camel JMS consumer to use the ActiveMQ broker declared above
-->
<bean id= "jms" class= "org.apache.camel.component.jms.JmsComponent" >

<property name= "connectionFactory" >
<bean class= "org.apache.activemq.ActiveMQConnectionFactory" >

<property name= "brokerURL" value= "tcp://localhost:61610" />
</bean>

</property>
</bean>

Then we enable the AspejctJ AOP auto proxy feature of Spring that will scan for classes
annotated with the @Aspect annotation:

TUTORIALS 98

<!-- turn on AspejctJ AOP to weave all @Aspects beans declared in this spring xml file
-->
<aop:aspectj-autoproxy/>

Then we define our Audit tracker bean that does the actual audit logging. It's also the class that
is annotated with the @Aspect so Spring will pick this up, as the aspect.

<!-- Aspect that tracks all the invocations of the business service -->
<bean id= "AuditTracker" class= "org.apache.camel.example.server.AuditTracker" >

<!-- define what store to use for audit backup -->
<property name= "store" ref= "AuditStore" />

</bean>

And the gem is that we inject the AuditTracker aspect bean with aCamel endpointthat defines
where the audit should be stored. Noticed how easy it is to setup as we have just defined an
endpoint URI that isfile based, meaning that we stored the audit tracks as files. We can change
this tore to anyCamel componentsas we wish. To store it on a JMS queue simply change the
URI to jms:queue:audit .

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->

<camel:camelContext id= "camel" >
<camel:package> org.apache.camel.example.server </camel:package>
<!-- enable JMX connector so we can connect to the server and browse mbeans -->
<!-- Camel will log at INFO level the service URI to use for connecting with

jconsole -->
<camel:jmxAgent id= "agent" createConnector= "true" />
<!-- the audit store endpoint is configued as file based.

In Camel 2.0 the endpoint should be defined in camel context -->
<camel:endpoint id= "AuditStore" uri= "file://target/store" />

</camel:camelContext>

And the full blown Aspejct for the audit tracker java code:

/**
* For audit tracking of all incoming invocations of our business (Multiplier)
*/

@Aspect
public class AuditTracker {

// endpoint we use for backup store of audit tracks
private Endpoint store;

@Required
public void setStore(Endpoint store) {

this .store = store;
}

99 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Components

@Before("execution(int org.apache.camel.example.server.Multiplier.multiply(int))
&& args(originalNumber)")

public void audit(int originalNumber) throws Exception {
String msg = "Someone called us with this number " + originalNumber;
System .out.println(msg);

// now send the message to the backup store using the Camel Message Endpoint
pattern

Exchange exchange = store.createExchange();
exchange.getIn().setBody(msg);
store.createProducer().process(exchange);

}

}

Run the Server

The Server is started using theorg.apache.camel.spring.Main class that can start
camel-spring application out-of-the-box. The Server can be started in several flavors:

�� as a standard java main application - just start the
org.apache.camel.spring.Main class

�� using maven jave:exec
�� usingcamel:run

In this sample as there are two servers (with and without AOP) we have prepared some
profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

Or for the AOP enabled Server example:
mvn compile exec:java -PCamelServerAOP

WRITING THE CLIENTS

This sample has three clients demonstrating different Camel techniques for communication
�� CamelClient using the ProducerTemplate for Spring template style coding
�� CamelRemoting using Spring Remoting
�� CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly usingProducerTemplate . We will later create a
client which uses Spring remoting to hide the fact that messaging is being used.

TUTORIALS 100

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Run+Maven+Goal

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel ="http://camel.apache.org/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id= "camel" >
<camel:template id= "camelTemplate" />

</camel:camelContext>

<!-- Camel JMSProducer to be able to send messages to a remote Active MQ server -->
<bean id= "jms" class= "org.apache.activemq.camel.component.ActiveMQComponent" >

<property name= "brokerURL" value= "tcp://localhost:61610" />
</bean>

The client will not use theCamel Maven Pluginso the Spring XML has been placed insrc/main/
resourcesto not conflict with the server configs.

camelContext The Camel context is defined but does not contain any routes

template TheProducerTemplate is used to place messages onto the JMS queue

jms bean
This initialises the Camel JMS component, allowing us to place messages
onto the queue

And the CamelClient source code:

public static void main(final String [] args) throws Exception {
System .out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

// get the camel template for Spring template style sending of messages (=
producer)

ProducerTemplate camelTemplate = (ProducerTemplate)
context.getBean("camelTemplate");

System .out.println("Invoking the multiply with 22");
// as opposed to the CamelClientRemoting example we need to define the service URI

in this java code
int response = (Integer)camelTemplate.sendBody("jms:queue:numbers" ,

ExchangePattern.InOut, 22);
System .out.println("... the result is: " + response);

101 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

System .exit(0);
}

TheProducerTemplate is retrieved from a SpringApplicationContext and used to
manually place a message on the "numbers" JMS queue. The exchange pattern
(ExchangePattern.InOut) states that the call should be synchronous, and that we will
receive a response.

Before running the client be sure that both the ActiveMQ broker and theCamelServer
are running.

Client Using Spring Remoting

Spring Remoting"eases the development of remote-enabled services". It does this by allowing
you to invoke remote services through your regular Java interface, masking that a remote
service is being called.

<!-- Camel proxy for a given service, in this case the JMS queue
In Camel 2.0 , the proxy should be defined in camelContext. -->

<camel:proxy
id= "multiplierProxy"
serviceInterface= "org.apache.camel.example.server.Multiplier"
serviceUrl= "jms:queue:numbers" />

The snippet above only illustrates the different and how Camel easily can setup and use Spring
Remoting in one line configurations.

Theproxy will create a proxy service bean for you to use to make the remote invocations.
TheserviceInterface property details which Java interface is to be implemented by the
proxy. serviceUrl defines where messages sent to this proxy bean will be directed. Here we
define the JMS endpoint with the "numbers" queue we used when working with Camel template
directly. The value of theid property is the name that will be the given to the bean when it is
exposed through the SpringApplicationContext . We will use this name to retrieve the
service in our client. I have named the beanmultiplierProxysimply to highlight that it is not the
same multiplier bean as is being used byCamelServer . They are in completely independent
contexts and have no knowledge of each other. As you are trying to mask the fact that
remoting is being used in a real application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String [] args) {
System .out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client-remoting.xml");

// just get the proxy to the service and we as the client can use the "proxy" as

TUTORIALS 102

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting

it was
// a local object we are invoking. Camel will under the covers do the remote

communication
// to the remote ActiveMQ server and fetch the response.
Multiplier multiplier = (Multiplier)context.getBean("multiplierProxy");

System .out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System .out.println("... the result is: " + response);

System .exit(0);
}

Again, the client is similar to the original client, but with some important differences.
1. The Spring context is created with the newcamel-client-remoting.xml
2. We retrieve the proxy bean instead of aProducerTemplate . In a non-trivial

example you would have the bean injected as in the standard Spring manner.
3. The multiply method is then called directly. In the client we are now working to an

interface. There is no mention of Camel or JMS inside our Java code.

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to
the Server. The Client uses the same simple API to get hold of the endpoint, create an
exchange that holds the message, set the payload and create a producer that does the send and
receive. All done using the same neutral Camel API forall the components in Camel. So if the
communication was socket TCP based you just get hold of a different endpoint and all the java
code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String [] args) throws Exception {
System .out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

CamelContext camel = (CamelContext) context.getBean("camel");

// get the endpoint from the camel context
Endpoint endpoint = camel.getEndpoint("jms:queue:numbers");

// create the exchange used for the communication
// we use the in out pattern for a synchronized exchange where we expect a response
Exchange exchange = endpoint.createExchange(ExchangePattern.InOut);
// set the input on the in body
// must you correct type to match the expected type of an Integer object
exchange.getIn().setBody(11);

103 TUTORIALS

// to send the exchange we need an producer to do it for us
Producer producer = endpoint.createProducer();
// start the producer so it can operate
producer.start();

// let the producer process the exchange where it does all the work in this
oneline of code

System .out.println("Invoking the multiply with 11");
producer.process(exchange);

// get the response from the out body and cast it to an integer
int response = exchange.getOut().getBody(Integer .class);
System .out.println("... the result is: " + response);

// stop and exit the client
producer.stop();
System .exit(0);

}

Switching to a different component is just a matter of using the correct endpoint. So if we had
defined a TCP endpoint as:"mina:tcp://localhost:61610" then its just a matter of
getting hold of this endpoint instead of the JMS and all the rest of the java code is exactly the
same.

Run the Clients

The Clients is started using their main class respectively.
�� as a standard java main application - just start their main class
�� using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Mavenpom.xml file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN

TheCamel Maven Pluginallows you to run your Camel routes directly from Maven. This
negates the need to create a host application, as we did with Camel server, simply to start up
the container. This can be very useful during development to get Camel routes running quickly.

Listing 7.Listing 7. pom.xmlpom.xml

<build>
<plugins>

<plugin>

TUTORIALS 104

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

All that is required is a new plugin definition in your Maven POM. As we have already placed
our Camel config in the default location (camel-server.xml has been placed in META-INF/
spring/) we do not need to tell the plugin where the route definitions are located. Simply run
mvn camel:run .

USING CAMEL JMX

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As
we have enabled the JMXAgent in our tutorial we can fire up the jconsole and connect to the
following service URI:service:jmx:rmi:///jndi/rmi://localhost:1099/
jmxrmi/camel . Notice that Camel will log at INFO level the JMX Connector URI:

...
DefaultInstrumentationAgent INFO JMX connector thread started on
service:jmx:rmi: ///jndi/rmi://claus-acer:1099/jmxrmi/camel
...

In the screenshot below we can see the route and its performance metrics:

SEE ALSO

¥ Spring Remoting with JMS Exampleon Amin Abbaspour's Weblog

105 TUTORIALS

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION

Creating this tutorial was inspired by a real life use-case I discussed over the phone with a
colleague. He was working at a client whom uses a heavy-weight integration platform from a
very large vendor. He was in talks with developer shops to implement a new integration on this
platform. His trouble was the shop tripled the price when they realized the platform of choice.
So I was wondering how we could do this integration with Camel. Can it be done, without

tripling the cost .

This tutorial is written during the development of the integration. I have decided to start off
with a sample that isn't Camel's but standard Java and then plugin Camel as we goes. Just as
when people needed to learn Spring you could consume it piece by piece, the same goes with
Camel.

The target reader is person whom hasn't experience or just started using Camel.

MOTIVATION FOR THIS TUTORIAL

I wrote this tutorial motivated as Camel lacked an example application that was based on the
web application deployment model. The entire world hasn't moved to pure OSGi deployments
yet.

THE USE-CASE

The goal is to allow staff to report incidents into a central administration. For that they use
client software where they report the incident and submit it to the central administration. As
this is an integration in a transition phase the administration should get these incidents by email
whereas they are manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term will transform the
report into an email and send it to the central administrator for manual processing.

The figure below illustrates this process. The end users reports the incidents using the client
applications. The incident is sent to the central integration platform as webservice. The
integration platform will process the incident and send an OK acknowledgment back to the
client. Then the integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the emails and take it
from there.

TUTORIALS 106

In EIP patterns

We distill the use case asEIPpatterns:

PARTS

This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel

Part 1 - This first part explain how to setup the project and get a webservice exposed using
Apache CXF. In fact we don't touch Camel yet.

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any
XML configuration file) and create the full feature integration. This part will introduce different
Camel's concepts and How we can build our solution using them like :

�� CamelContext
�� Endpoint, Exchange & Producer
�� Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the solution with the
event driven consumer and how to send the email through the Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and usingCXF endpoints directly in Camel

LINKS

�� Introduction
�� Part 1
�� Part 2

107 TUTORIALS

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2

Using Axis 2
See this blog entry by Sagara demonstrating how to useApache Axis 2instead of
Apache CXFas the web service framework.

�� Part 3
�� Part 4
�� Part 5

PART 1

PREREQUISITES

This tutorial uses the following frameworks:
¥ Maven 2.0.9
¥ Apache Camel 1.4.0
¥ Apache CXF 2.1.1
¥ Spring 2.5.5

Note: The sample project can be downloaded, see theresourcessection.

INITIAL PROJECT SETUP

We want the integration to be a standard .war application that can be deployed in any web
container such as Tomcat, Jetty or even heavy weight application servers such as WebLogic or
WebSphere. There fore we start off with the standard Maven webapp project that is created
with the following long archetype command:

mvn archetype:create -DgroupId=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupId etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But I have used these package names as the example is an official
part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the webservice part where
we want to use Apache CXF for the webservice stuff. So we add this to the pom.xml

<properties>
<cxf-version> 2.1.1 </cxf-version>

</properties>

TUTORIALS 108

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
http://ws.apache.org/axis2/
http://cxf.apache.org/

<dependency>
<groupId> org.apache.cxf </groupId>
<artifactId> cxf-rt-core </artifactId>
<version> ${cxf-version} </version>

</dependency>
<dependency>

<groupId> org.apache.cxf </groupId>
<artifactId> cxf-rt-frontend-jaxws </artifactId>
<version> ${cxf-version} </version>

</dependency>
<dependency>

<groupId> org.apache.cxf </groupId>
<artifactId> cxf-rt-transports-http </artifactId>
<version> ${cxf-version} </version>

</dependency>

DEVELOPING THE WEBSERVICE

As we want to develop webservice with the contract first approach we create our .wsdl file. As
this is a example we have simplified the model of the incident to only include 8 fields. In real life
the model would be a bit more complex, but not to much.

We put the wsdl file in the foldersrc/main/webapp/WEB-INF/wsdl and name the
file report_incident.wsdl .

<?xml version= "1.0" encoding= "ISO-8859-1" ?>
<wsdl:definitions xmlns:soap ="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns ="http://reportincident.example.camel.apache.org"
xmlns:xs ="http://www.w3.org/2001/XMLSchema"
xmlns:http ="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl ="http://schemas.xmlsoap.org/wsdl/"
targetNamespace= "http://reportincident.example.camel.apache.org" >

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace= "http://reportincident.example.camel.apache.org" >

<xs:element name= "inputReportIncident" >
<xs:complexType>

<xs:sequence>
<xs:element type= "xs:string"

name="incidentId" />
<xs:element type= "xs:string"

name="incidentDate" />
<xs:element type= "xs:string"

name="givenName" />
<xs:element type= "xs:string"

name="familyName" />
<xs:element type= "xs:string"

name="summary" />
<xs:element type= "xs:string"

109 TUTORIALS

name="details" />
<xs:element type= "xs:string"

name="email" />
<xs:element type= "xs:string"

name="phone" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name= "outputReportIncident" >

<xs:complexType>
<xs:sequence>

<xs:element type= "xs:string"
name="code" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name= "inputReportIncident" >

<wsdl:part name= "parameters" element= "tns:inputReportIncident" />
</wsdl:message>
<wsdl:message name= "outputReportIncident" >

<wsdl:part name= "parameters" element= "tns:outputReportIncident" />
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name= "ReportIncidentEndpoint" >

<wsdl:operation name= "ReportIncident" >
<wsdl:input message= "tns:inputReportIncident" />
<wsdl:output message= "tns:outputReportIncident" />

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name= "ReportIncidentBinding" type= "tns:ReportIncidentEndpoint" >
<soap:binding transport= "http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name= "ReportIncident" >

<soap:operation

soapAction= "http://reportincident.example.camel.apache.org/ReportIncident"
style= "document" />

<wsdl:input>
<soap:body parts= "parameters" use= "literal" />

</wsdl:input>
<wsdl:output>

<soap:body parts= "parameters" use= "literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->

TUTORIALS 110

<wsdl:service name= "ReportIncidentService" >
<wsdl:port name= "ReportIncidentPort"

binding= "tns:ReportIncidentBinding" >
<soap:address

location= "http://reportincident.example.camel.apache.org" />
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

CXF wsdl2java

Then we integration the CXF wsdl2java generator in the pom.xml so we have CXF generate
the needed POJO classes for our webservice contract.
However at first we must configure maven to live in the modern world of Java 1.5 so we must
add this to the pom.xml

<!-- to compile with 1.5 -->
<plugin>

<groupId> org.apache.maven.plugins </groupId>
<artifactId> maven-compiler-plugin </artifactId>
<configuration>

<source> 1.5 </source>
<target> 1.5 </target>

</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into the compile goal so
its automatic run all the time:

<!-- CXF wsdl2java generator, will plugin to the compile goal
-->

<plugin>
<groupId> org.apache.cxf </groupId>
<artifactId> cxf-codegen-plugin </artifactId>
<version> ${cxf-version} </version>
<executions>

<execution>
<id> generate-sources </id>
<phase> generate-sources </phase>
<configuration>

<sourceRoot> ${basedir}/target/
generated/src/main/java </sourceRoot>

<wsdlOptions>
<wsdlOption>

<wsdl> ${basedir}/src/main/webapp/WEB-INF/wsdl/report_incident.wsdl </wsdl>
</wsdlOption>

</wsdlOptions>

111 TUTORIALS

</configuration>
<goals>

<goal> wsdl2java </goal>
</goals>

</execution>
</executions>

</plugin>

You are now setup and should be able to compile the project. So running themvn compile
should run the CXF wsdl2java and generate the source code in the folder&{basedir}/
target/generated/src/main/java that we specified in the pom.xml above. Since its in
the target/generated/src/main/java maven will pick it up and include it in the build
process.

Configuration of the web.xml

Next up is to configure the web.xml to be ready to use CXF so we can expose the webservice.
As Spring is the center of the universe, or at least is a very important framework in today's Java
land we start with the listener that kick-starts Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -->
<listener>

<listener-class> org.springframework.web.context.ContextLoaderListener </listener-class>
</listener>

And then we have the CXF part where we define the CXF servlet and its URI mappings to
which we have chosen that all our webservices should be in the path/webservices/

<!-- CXF servlet -->
<servlet>

<servlet-name> CXFServlet </servlet-name>

<servlet-class> org.apache.cxf.transport.servlet.CXFServlet </servlet-class>
<load-on-startup> 1</load-on-startup>

</servlet>

<!-- all our webservices are mapped under this URI pattern -->
<servlet-mapping>

<servlet-name> CXFServlet </servlet-name>
<url-pattern> /webservices/* </url-pattern>

</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring XML that we link
to fron the web.xml by the standard SpringcontextConfigLocation property in the
web.xml

TUTORIALS 112

<!-- location of spring xml files -->
<context-param>

<param-name> contextConfigLocation </param-name>
<param-value> classpath:cxf-config.xml </param-value>

</context-param>

We have named our CXF configuration filecxf-config.xml and its located in the root of
the classpath. In Maven land that is we can have thecxf-config.xml file in thesrc/
main/resources folder. We could also have the file located in the WEB-INF folder for
instance<param-value>/WEB-INF/cxf-config.xml</param-value> .

Getting rid of the old jsp world

The maven archetype that created the basic folder structure also created a sample .jsp file
index.jsp. This filesrc/main/webapp/index.jsp should be deleted.

Configuration of CXF

The cxf-config.xml is as follows:

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws ="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.0.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource= "classpath:META-INF/cxf/cxf.xml" />
<import resource= "classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource= "classpath:META-INF/cxf/cxf-servlet.xml" />

<!-- implementation of the webservice -->
<bean id= "reportIncidentEndpoint"

class= "org.apache.camel.example.reportincident.ReportIncidentEndpointImpl" />

<!-- export the webservice using jaxws -->
<jaxws:endpoint id= "reportIncident"

implementor= "#reportIncidentEndpoint"
address= "/incident"
wsdlLocation= "/WEB-INF/wsdl/report_incident.wsdl"
endpointName= "s:ReportIncidentPort"
serviceName= "s:ReportIncidentService"
xmlns:s ="http://reportincident.example.camel.apache.org" />

</beans>

The configuration is standardCXF and is documented at theApache CXF website.

The 3 import elements is needed by CXF and they must be in the file.

113 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cxf.apache.org/

Noticed that we have a spring beanreportIncidentEndpoint that is the implementation
of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use the # mark to
identify its a reference to a spring bean. We could have stated the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint"
but then we lose the ability to let the ReportIncidentEndpoint be configured by spring.
Theaddress attribute defines the relative part of the URL of the exposed webservice.
wsdlLocation is an optional parameter but for persons like me that likes contract-first we
want to expose our own .wsdl contracts and not the auto generated by the frameworks, so
with this attribute we can link to the real .wsdl file. The last stuff is needed by CXF as you could
have several services so it needs to know which this one is. Configuring these is quite easy as all
the information is in the wsdl already.

Implementing the ReportIncidentEndpoint

Phew after all these meta files its time for some java code so we should code the implementor
of the webservice. So we fire upmvn compile to let CXF generate the POJO classes for our
webservice and we are ready to fire up a Java editor.

You can usemvn idea:idea or mvn eclipse:eclipse to create project files for
these editors so you can load the project. However IDEA has been smarter lately and can load
a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and dirty as it can get.
At first beware that since its jaxws and Java 1.5 we get annotations for the money, but they
reside on the interface so we can remove them from our implementations so its a nice plain
POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System .out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

We just output the person that invokes this webservice and returns a OK response. This class
should be in the maven source root foldersrc/main/java under the package name

TUTORIALS 114

org.apache.camel.example.reportincident . Beware that the maven archetype
tool didn't create thesrc/main/java folder , so you should create it manually.

To test if we are home free we runmvn clean compile .

Running our webservice

Now that the code compiles we would like to run it in a web container, so we add jetty to our
pom.xml so we can runmvn jetty:run :

<properties>
...
<jetty-version> 6.1.1 </jetty-version>

</properties>

<build>
<plugins>

...
<!-- so we can run mvn jetty:run -->
<plugin>

<groupId> org.mortbay.jetty </groupId>
<artifactId> maven-jetty-plugin </artifactId>
<version> ${jetty-version} </version>

</plugin>

Notice: We use Jetty v6.1.1 as never versions has troubles on my laptop. Feel free to try a
newer version on your system, but v6.1.1 works flawless.

So to see if everything is in order we fire up jetty withmvn jetty:run and if everything
is okay you should be able to accesshttp://localhost:8080 .
Jetty is smart that it will list the correct URI on the page to our web application, so just click on
the link. This is smart as you don't have to remember the exact web context URI for your
application - just fire up the default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the web.xml to instruct
the CXF servlet to accept the pattern/webservices/* we should hit this URL to get the
attention of CXF:http://localhost:8080/camel-example-reportincident/
webservices .

115 TUTORIALS

http://localhost:8080
http://localhost:8080/camel-example-reportincident/webservices
http://localhost:8080/camel-example-reportincident/webservices

Hitting the webservice

Now we have the webservice running in a standard .war application in a standard web container
such as Jetty we would like to invoke the webservice and see if we get our code executed.
Unfortunately this isn't the easiest task in the world - its not so easy as a REST URL, so we
need tools for this. So we fire up our trusty webservice toolSoapUIand let it be the one to fire
the webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the expected OK response
and the console outputs the System.out so we are ready to code.

Remote Debugging

Okay a little sidestep but wouldn't it be cool to be able to debug your code when its fired up
under Jetty? As Jetty is started from maven, we need to instruct maven to use debug mode.
Se we set theMAVEN_OPTSenvironment to start in debug mode and listen on port 5005.

MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Then you need to restart Jetty so its stopped withctrl + c . Remember to start a new shell to
pickup the new environment settings. And start jetty again.

Then we can from our IDE attach a remote debugger and debug as we want.
First we configure IDEA to attach to a remote debugger on port 5005:

TUTORIALS 116

http://www.soapui.org/

Then we set a breakpoint in our codeReportIncidentEndpoint and hit the SoapUI
once again and we are breaked at the breakpoint where we can inspect the parameters:

117 TUTORIALS

Adding a unit test

Oh so much hard work just to hit a webservice, why can't we just use an unit test to invoke
our webservice? Yes of course we can do this, and that's the next step.
First we create the folder structuresrc/test/java andsrc/test/resources . We
then create the unit test in thesrc/test/java folder.

package org.apache.camel.example.reportincident;

import junit.framework.TestCase;

/**
* Plain JUnit test of our webservice.
*/

public class ReportIncidentEndpointTest extends TestCase {

}

TUTORIALS 118

Here we have a plain old JUnit class. As we want to test webservices we need to start and
expose our webservice in the unit test before we can test it. And JAXWS has pretty decent
methods to help us here, the code is simple as:

import javax.xml.ws.Endpoint;
...

private static String ADDRESS = "http: //localhost:9090/unittest" ;

protected void startServer() throws Exception {
// We need to start a server that exposes or webservice during the unit testing
// We use jaxws to do this pretty simple
ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl();
Endpoint.publish(ADDRESS, server);

}

The Endpoint class is thejavax.xml.ws.Endpoint that under the covers looks for a
provider and in our case its CXF - so its CXF that does the heavy lifting of exposing out
webservice on the given URL address. Since our class ReportIncidentEndpointImpl implements
the interfaceReportIncidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF wsdl2java generated
interface:

/*
*
*/

package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**
* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008
* Generated source version: 2.1.1
*
*/

/*
*
*/

@WebService(targetNamespace = "http: //reportincident.example.camel.apache.org" , name =

119 TUTORIALS

"ReportIncidentEndpoint")
@XmlSeeAlso({ObjectFactory.class})
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*
*
*/

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "outputReportIncident" , targetNamespace =

"http: //reportincident.example.camel.apache.org" , partName = "parameters")
@WebMethod(operationName = "ReportIncident" , action =

"http: //reportincident.example.camel.apache.org/ReportIncident")
public OutputReportIncident reportIncident(

@WebParam(partName = "parameters" , name = "inputReportIncident" ,
targetNamespace = "http: //reportincident.example.camel.apache.org")

InputReportIncident parameters
);

}

Next up is to create a webservice client so we can invoke our webservice. For this we actually
use the CXF framework directly as its a bit more easier to create a client using this framework
than using the JAXWS style. We could have done the same for the server part, and you should
do this if you need more power and access more advanced features.

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
...

protected ReportIncidentEndpoint createCXFClient() {
// we use CXF to create a client for us as its easier than JAXWS and works
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
factory.setServiceClass(ReportIncidentEndpoint.class);
factory.setAddress(ADDRESS);
return (ReportIncidentEndpoint) factory.create();

}

So now we are ready for creating a unit test. We have the server and the client. So we just
create a plain simple unit test method as the usual junit style:

public void testRendportIncident() throws Exception {
startServer();

ReportIncidentEndpoint client = createCXFClient();

InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");

TUTORIALS 120

input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong" , "OK" , out.getCode());

}

Now we are nearly there. But if you run the unit test withmvn test then it will fail. Why!!!
Well its because that CXF needs is missing some dependencies during unit testing. In fact it
needs the web container, so we need to add this to ourpom.xml .

<!-- cxf web container for unit testing -->
<dependency>

<groupId> org.apache.cxf </groupId>
<artifactId> cxf-rt-transports-http-jetty </artifactId>
<version> ${cxf-version} </version>
<scope> test </scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how agile, embedable
and popular Jetty is.

So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART 1

Thanks for being patient and reading all this more or less standard Maven, Spring, JAXWS and
Apache CXF stuff. Its stuff that is well covered on the net, but I wanted a full fledged tutorial on
a maven project setup that is web service ready with Apache CXF. We will use this as a base
for the next part where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the Spring framework
that we take for granted today.

RESOURCES

¥ Apache CXF user guide¥

121 TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html

Name Size Creator
Creation
Date

Comment

tutorial_reportincident_part-
one.zi...

14
kB

Claus
Ibsen

Jul 17,
2008 23:34

LINKS

�� Introduction
�� Part 1
�� Part 2
�� Part 3
�� Part 4
�� Part 5

PART 2

ADDING CAMEL

In this part we will introduce Camel so we start by adding Camel to our pom.xml:

<properties>
...
<camel-version> 1.4.0 </camel-version>

</properties>

<!-- camel -->
<dependency>

<groupId> org.apache.camel </groupId>
<artifactId> camel-core </artifactId>
<version> ${camel-version} </version>

</dependency>

That's it, onlyone dependency for now.
Now we turn towards our webservice endpoint implementation where we want to let Camel
have a go at the input we receive. As Camel is very non invasive its basically a .jar file then we
can just grap Camel but creating a new instance ofDefaultCamelContext that is the
hearth of Camel its context.

CamelContext camel = new DefaultCamelContext();

In fact we create a constructor in our webservice and add this code:

TUTORIALS 122

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=createddate
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90920/tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/download/attachments/90920/tutorial_reportincident_part-one.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

Synchronize IDE
If you continue from part 1, remember to update your editor project settings since
we have introduce new .jar files. For instance IDEA has a feature to synchronize
with Maven projects.

private CamelContext camel;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// add the log component
camel.addComponent("log" , new LogComponent());

// start Camel
camel.start();

}

LOGGING THE "HELLO WORLD"

Here at first we want Camel to log thegivenName andfamilyName parameters we
receive, so we add theLogComponent with the keylog . And we muststart Camel before
its ready to act.
Then we change the code in the method that is invoked by Apache CXF when a webservice
request arrives. We get the name and let Camel have a go at it in the new method we create
sendToCamel :

public OutputReportIncident reportIncident(InputReportIncident parameters) {
String name = parameters.getGivenName() + " " + parameters.getFamilyName();

// let Camel do something with the name
sendToCamelLog(name);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Next is the Camel code. At first it looks like there are many code lines to do a simple task of
logging the name - yes it is. But later you will in fact realize this is one of Camels true power. Its
concise API. Hint: The same code can be used forany component in Camel.

123 TUTORIALS

Component Documentation
TheLogandFilecomponents is documented as well, just click on the links. Just
return to this documentation later when you must use these components for real.

private void sendToCamelLog(String name) {
try {

// get the log component
Component component = camel.getComponent("log");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to configure
// endpoints based on URI.
// com.mycompany.part2 = the log category used. Will log at INFO level as

default
Endpoint endpoint = component.createEndpoint("log:com.mycompany.part2");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now we want to send the exchange to this endpoint and we then need a
producer

// for this , so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the log component, that

will process
// the exchange and yes log the payload
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

Okay there are code comments in the code block above that should explain what is happening.
We run the code by invoking our unit test with mavenmvn test , and we should get this log
line:

TUTORIALS 124

https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/File

INFO: Exchange[BodyType: String , Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE

Okay that isn't to impressive, Camel can log Well I promised that the above code style can
be used forany component, so let's store the payload in a file. We do this by adding the file
component to the Camel context

// add the file component
camel.addComponent("file" , new FileComponent());

And then we let camel write the payload to the file after we have logged, by creating a new
methodsendToCamelFile . We want to store the payload in filename with the incident id so
we need this parameter also:

// let Camel do something with the name
sendToCamelLog(name);
sendToCamelFile(parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI configuration when we create
the endpoint as we pass in configuration parameters to the file component.
And then we need to set the output filename and this is done by adding a special header to the
exchange. That's the only difference:

private void sendToCamelFile(String incidentId, String name) {
try {

// get the file component
Component component = camel.getComponent("file");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to configure
// endpoints based on URI.
// file://target instructs the base folder to output the files. We put in

the target folder
// then its actumatically cleaned by mvn clean
Endpoint endpoint = component.createEndpoint("file: //target");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now a special header is set to instruct the file component what the
output filename

// should be

125 TUTORIALS

exchange.getIn().setHeader(FileComponent.HEADER_FILE_NAME, "incident-" +
incidentId + ".txt");

// now we want to send the exchange to this endpoint and we then need a
producer

// for this , so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the file component, that

will process
// the exchange and yes write the payload to the given filename
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

After running our unit test again withmvn test we have a output file in the target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS

In the file example above the configuration was URI based. What if you want 100% java setter
based style, well this is of course also possible. We just need to cast to the component specific
endpoint and then we have all the setters available:

// create the file endpoint, we cast to FileEndpoint because then we can do
// 100% java settter based configuration instead of the URI sting based
// must pass in an empty string, or part of the URI configuration if

wanted
FileEndpoint endpoint = (FileEndpoint)component.createEndpoint("");
endpoint.setFile(new File("target/subfolder"));
endpoint.setAutoCreate(true);

That's it. Now we have used the setters to configure theFileEndpoint that it should store
the file in the folder target/subfolder. Of course Camel now stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

TUTORIALS 126

LESSONS LEARNED

Okay I wanted to demonstrate how you can be in 100% control of the configuration and usage
of Camel based on plain Java code with no hidden magic or specialXML or other configuration
files. Just add the camel-core.jar and you are ready to go.

You must have noticed that the code for sending a message to a given endpoint is the same
for both the log andfile , in factany Camel endpoint. You as the client shouldn't bother with
component specific code such as file stuff for file components, jms stuff for JMS messaging etc.
This is what theMessage EndpointEIP pattern is all about and Camel solves this very very nice -
a key pattern in Camel.

REDUCING CODE LINES

Now that you have been introduced to Camel and one of its masterpiece patterns solved
elegantly with theMessage Endpointits time to give productive and show a solution in fewer
code lines, in fact we can get it down to 5, 4, 3, 2 .. yes only1 line of code .

The key is theProducerTemplate that is a Spring'ish xxxTemplate based producer.
Meaning that it has methods to send messages to any Camel endpoints. First of all we need to
get hold of such a template and this is done from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
...

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

Now we can usetemplate for sending payloads to any endpoint in Camel. So all the logging
gabble can be reduced to:

template.sendBody("log:com.mycompany.part2.easy" , name);

And the same goes for the file, but we must also send the header to instruct what the output
filename should be:

String filename = "easy-incident-" + incidentId + ".txt" ;
template.sendBodyAndHeader("file: //target/subfolder" , name,

FileComponent.HEADER_FILE_NAME, filename);

127 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint

REDUCING EVEN MORE CODE LINES

Well we got the Camel code down to 1-2 lines for sending the message to the component that
does all the heavy work of wring the message to a file etc. But we still got 5 lines to initialize
Camel.

camel = new DefaultCamelContext();
camel.addComponent("log" , new LogComponent());
camel.addComponent("file" , new FileComponent());
template = camel.createProducerTemplate();
camel.start();

This can also be reduced. All the standard components in Camel is auto discovered on-the-fly
so we can remove these code lines and we are down to 3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext();
template = camel.createProducerTemplate();
camel.start();

Later will we see how we can reduce this to ... in fact 0 java code lines. But the 3 lines will do
for now.

MESSAGE TRANSLATION

Okay lets head back to the over goal of the integration. Looking at the EIP diagrams at the
introduction page we need to be able to translate the incoming webservice to an email. Doing
so we need to create the email body. When doing the message translation we could put up our
sleeves and do it manually in pure java with a StringBuilder such as:

private String createMailBody(InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();
sb.append("Incident ").append(parameters.getIncidentId());
sb.append(" has been reported on the ").append(parameters.getIncidentDate());
sb.append(" by ").append(parameters.getGivenName());
sb.append(" ").append(parameters.getFamilyName());

// and the rest of the mail body with more appends to the string builder

return sb.toString();
}

But as always it is a hardcoded template for the mail body and the code gets kinda ugly if the
mail message has to be a bit more advanced. But of course it just works out-of-the-box with
just classes already in the JDK.

TUTORIALS 128

Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't seen before it will
try to look for it in the classpath. It will do so by looking for special Camel
component marker files that reside in the folderMETA-INF/services/org/
apache/camel/component . If there are files in this folder it will read them as
the filename is thescheme part of the URL. For instance thelog component is
defined in this fileMETA-INF/services/org/apache/component/log
and its content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same technique and have
them been auto discovered on-the-fly.

Lets use a template language instead such asApache Velocity. As Camel have a component
for Velocityintegration we will use this component. Looking at theComponent Listoverview
we can see that camel-velocity component uses the artifactIdcamel-velocity so therefore
we need to add this to thepom.xml

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-velocity </artifactId>
<version> ${camel-version} </version>

</dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring 2.0.8 and camel-
velocity is dependent on Spring 2.5.5. To remedy this we could wrestle with thepom.xml
with excludes settings in the dependencies or just bring in another dependencycamel-
spring :

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-spring </artifactId>
<version> ${camel-version} </version>

</dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it in nearly all
situations - we will look into how well Camel is seamless integration with Spring in part 3. For
now its just another dependency.

129 TUTORIALS

http://velocity.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/Component

We create the mail body with the Velocity template and create the filesrc/main/
resources/MailBody.vm . The content in theMailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
$body.givenName $body.familyName.

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the following 3 code
lines:

private void generateEmailBodyAndStoreAsFile(InputReportIncident parameters) {
// generate the mail body using velocity template
// notice that we just pass in our POJO (= InputReportIncident) that we
// got from Apache CXF to Velocity.
Object response = template.sendBody("velocity:MailBody.vm" , parameters);
// Note: the response is a String and can be cast to String if needed

// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt" ;
template.sendBodyAndHeader("file: //target/subfolder" , response,

FileComponent.HEADER_FILE_NAME, filename);
}

What is impressive is that we can just pass in our POJO object we got from Apache CXF to
Velocity and it will be able to generate the mail body with this object in its context. Thus we
don't need to prepareanything before we let Velocity loose and generate our mail body.
Notice that thetemplate method returns a object with out response. This object contains
the mail body as a String object. We can cast to String if needed.

If we run our unit test withmvn test we can in fact see that Camel has produced the file
and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

TUTORIALS 130

Details:
more bla bla

This is an auto generated email. You can not reply.

FIRST PART OF THE SOLUTION

What we have seen here is actually what it takes to build the first part of the integration flow.
Receiving a request from a webservice, transform it to a mail body and store it to a file, and
return an OK response to the webservice. All possible within 10 lines of code. So lets wrap it
up here is what it takes:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm" , parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt" ;
template.sendBodyAndHeader("file: //target/subfolder" , mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

131 TUTORIALS

}

Okay I missed by one, its in fact only9 lines of java code and 2 fields .

END OF PART 2

I know this is a bit different introduction to Camel to how you can start using it in your
projects just as a plain java .jar framework that isn't invasive at all. I took you through the
coding parts that requires 6 - 10 lines to send a message to an endpoint, buts it's important to
show theMessage EndpointEIP pattern in action and how its implemented in Camel. Yes of
course Camel also has to one liners that you can use, and will use in your projects for sending
messages to endpoints. This part has been about good old plain java, nothing fancy with Spring,
XML files, auto discovery, OGSi or other new technologies. I wanted to demonstrate the basic
building blocks in Camel and how its setup in pure god old fashioned Java. There are plenty of
eye catcher examples with one liners that does more than you can imagine - we will come
there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets interesting since
we have to wrestle with the event driven consumer.
Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us some fun with the
Camel. See you in part 3.

RESOURCES

¥ Name Size Creator Creation Date Comment

part-two.zip 17 kB Claus Ibsen Jul 19, 2008 00:52

LINKS

�� Introduction
�� Part 1
�� Part 2
�� Part 3
�� Part 4
�� Part 5

TUTORIALS 132

https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90919/part-two.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

PART 3

RECAP

Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm" , parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt" ;
template.sendBodyAndHeader("file: //target/subfolder" , mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

This completes the first part of the solution: receiving the message using webservice, transform
it to a mail body and store it as a text file.
What is missing is the last part that polls the text files and send them as emails. Here is where
some fun starts, as this requires usage of theEvent Driven ConsumerEIP pattern to react when
new files arrives. So lets see how we can do this in Camel. There is a saying: Many roads lead to
Rome, and that is also true for Camel - there are many ways to do it in Camel.

133 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer

ADDING THE EVENT DRIVEN CONSUMER

We want to add the consumer to our integration that listen for new files, we do this by
creating a private method where the consumer code lives. We must register our consumer in
Camel before its started so we need to add, and there fore we call the method
addMailSenderConsumer in the constructor below:

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

addMailSendConsumer();

// start Camel
camel.start();

}

The consumer needs to be consuming from an endpoint so we grab the endpoint from Camel
we want to consume. It'sfile://target/subfolder . Don't be fooled this endpoint
doesn't have to 100% identical to the producer, i.e. the endpoint we used in the previous part
to create and store the files. We could change the URL to include some options, and to make it
more clear that it's possible we setup a delay value to 10 seconds, and the first poll starts after
2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.
When we have the endpoint we can create the consumer (just as in part 1 where we created a
producer}. Creating the consumer requires aProcessorwhere we implement the java code
what should happen when a message arrives. To get the mail body as a String object we can use
the getBody method where we can provide the type we want in return.
Sending the email is still left to be implemented, we will do this later. And finally we must
remember to start the consumer otherwise its not active and won't listen for new files.

private void addMailSendConsumer() throws Exception {
// Grab the endpoint where we should consume. Option - the first poll starts

after 2 seconds
Endpoint endpint = camel.getEndpoint("file: //target/

subfolder?consumer.initialDelay=2000");

// create the event driven consumer
// the Processor is the code what should happen when there is an event
// (think it as the onMessage method)
Consumer consumer = endpint.createConsumer(new Processor() {

TUTORIALS 134

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
/target/subfolder
https://cwiki.apache.org/confluence/display/CAMEL/Processor

URL Configuration
The URL configuration in Camelendpointsis just like regular URL we know from
the Internet. You use ? and & to set the options.

Camel Type Converter
Why don't we just cast it as we always do in Java? Well the biggest advantage when
you provide the type as a parameter you tell Camel what type you want and Camel
can automatically convert it for you, using its flexibleType Convertermechanism.
This is a great advantage, and you should try to use this instead of regular type
casting.

public void process(Exchange exchange) throws Exception {
// get the mail body as a String
String mailBody = exchange.getIn().getBody(String .class);

// okay now we are read to send it as an email
System .out.println("Sending email..." + mailBody);

}
});

// star the consumer, it will listen for files
consumer.start();

}

Before we test it we need to be aware that our unit test is only catering for the first part of the
solution, receiving the message with webservice, transforming it using Velocity and then storing
it as a file - it doesn't test theEvent Driven Consumerwe just added. As we are eager to see it
in action, we just do a common trick adding some sleep in our unit test, that gives ourEvent
Driven Consumertime to react and print to System.out. We will later refine the test:

public void testRendportIncident() throws Exception {
...

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong" , "OK" , out.getCode());

// give the event driven consumer time to react
Thread .sleep(10 * 1000);

}

We run the test withmvn clean test and have eyes fixed on the console output.
During all the output in the console, we see that our consumer has been triggered, as we want.

135 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter

2008-07-19 12:09:24,140 [mponent@1f12c4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt ...
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1f12c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

SENDING THE EMAIL

Sending the email requires access to a SMTP mail server, but the implementation code is very
simple:

private void sendEmail(String body) {
// send the email to your mail server
String url =

"smtp: //someone@localhost?password=secret&to=incident@mycompany.com" ;
template.sendBodyAndHeader(url, body, "subject" , "New incident reported");

}

And just invoke the method from our consumer:

// okay now we are read to send it as an email
System .out.println("Sending email...");
sendEmail(mailBody);
System .out.println("Email sent");

UNIT TESTING MAIL

For unit testing the consumer part we will use a mock mail framework, so we add this to our
pom.xml :

<!-- unit testing mail using mock -->
<dependency>

<groupId> org.jvnet.mock-javamail </groupId>
<artifactId> mock-javamail </artifactId>

TUTORIALS 136

<version> 1.7 </version>
<scope> test </scope>

</dependency>

Then we prepare our integration to run with or without the consumer enabled. We do this to
separate the route into the two parts:

�� receive the webservice, transform and save mail file and return OK as repose
�� the consumer that listen for mail files and send them as emails

So we change the constructor code a bit:

public ReportIncidentEndpointImpl() throws Exception {
init(true);

}

public ReportIncidentEndpointImpl(boolean enableConsumer) throws Exception {
init(enableConsumer);

}

private void init(boolean enableConsumer) throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

if (enableConsumer) {
addMailSendConsumer();

}

// start Camel
camel.start();

}

Then remember to change theReportIncidentEndpointTest to pass infalse in the
ReportIncidentEndpointImpl constructor.
And as always runmvn clean test to be sure that the latest code changes works.

ADDING NEW UNIT TEST

We are now ready to add a new unit test that tests the consumer part so we create a new test
class that has the following code structure:

137 TUTORIALS

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

}

}

As we want to test the consumer that it can listen for files, read the file content and send it as
an email to our mailbox we will test it by asserting that we receive 1 mail in our mailbox and
that the mail is the one we expect. To do so we need to grab the mailbox with the mockmail
API. This is done as simple as:

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails" , 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen for. So we could
use plain java.io.File API to create the file, but wait isn't there an smarter solution? ... yes Camel
of course. Camel can do amazing stuff in one liner codes with its ProducerTemplate, so we
need to get a hold of this baby. We expose this template in our ReportIncidentEndpointImpl
but adding this getter:

protected ProducerTemplate getTemplate() {
return template;

}

Then we can use the template to create the file inone code line :

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file: //target/

subfolder?append= false " , "Hello World" ,
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

Then we just need to wait a little for the consumer to kick in and do its work and then we
should assert that we got the new mail. Easy as just:

TUTORIALS 138

// let the consumer have time to run
Thread .sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail" , 1, box.size());
assertEquals("Subject wrong" , "New incident reported" ,

box.get(0).getSubject());
assertEquals("Mail body wrong" , "Hello World" , box.get(0).getContent());

}

The final class for the unit test is:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails" , 0, box.size());

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file: //target/

subfolder?append= false " , "Hello World" ,
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

// let the consumer have time to run
Thread .sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail" , 1, box.size());
assertEquals("Subject wrong" , "New incident reported" ,

box.get(0).getSubject());
assertEquals("Mail body wrong" , "Hello World" , box.get(0).getContent());

}

}

END OF PART 3

Okay we have reached the end of part 3. For now we have only scratched the surface of what
Camel is and what it can do. We have introduced Camel into our integration piece by piece and

139 TUTORIALS

slowly added more and more along the way. And the most important is:you as the
developer never lost control . We hit a sweet spot in the webservice implementation
where we could write our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was time to translate
the input to a mail body, we decided when the content should be written to a file. This is very
important to not lose control, that the bigger and heavier frameworks tend to do. No names
mentioned, but boy do developers from time to time dislike these elephants. And Camel isno
elephant .

I suggest you download the samples from part 1 to 3 and try them out. It is great basic
knowledge to have in mind when we look at some of the features where Camel really excel -
the routing domain language .

From part 1 to 3 we touched concepts such as::
�� Endpoint
�� URI configuration
�� Consumer
�� Producer
�� Event Driven Consumer
�� Component
�� CamelContext
�� ProducerTemplate
�� Processor
�� Type Converter

RESOURCES

¥ Name Size Creator Creation Date Comment

part-three.zip 18 kB Claus Ibsen Jul 20, 2008 03:34

LINKS

�� Introduction
�� Part 1
�� Part 2
�� Part 3
�� Part 4
�� Part 5

TUTORIALS 140

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Component
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/90999/part-three.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5

PART 4

INTRODUCTION

This section is about regular Camel. The examples presented here in this section is much more
in common of all the examples we have in the Camel documentation.

ROUTING

Camel is particular strong as a light-weight and agilerouting andmediation framework. In
this part we will introduce therouting concept and how we can introduce this into our
solution.
Looking back at the figure from theIntroductionpage we want to implement this routing.
Camel has support for expressing thisrouting logic using Javaas a DSL (Domain Specific
Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its
the most powerful and all developers know Java. Later we will introduce the XML version that
is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is aboutDevelopers not
loosing control . In my humble experience one of the key fears of developers is that they are
forced into a tool/framework where they loose control and/or power, and the possible is now
impossible. So in this part we stay clear with this vision and our starting point is as follows:

�� We have generated the webservice source code using the CXF wsdl2java generator
and we have our ReportIncidentEndpointImpl.java file where we as a Developer feels
home and have the power.

So the starting point is:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// WE ARE HERE !!!
return null ;

}

}

Yes we have a simple plain Java class where we have the implementation of the webservice. The
cursor is blinking at the WE ARE HERE block and this is where we feel home. More or less any
Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache
CXF or some other quite popular framework. They all allow the developer to be in control and

141 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Routes

If you have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again!

implement the code logic as plain Java code. Camel of course doesn't enforce this to be any
different. Okay the boss told us to implement the solution from the figure in the Introduction
page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy
lifting of supporting EIP verbs for end-users to express the routing. It does take a little while to
get settled and used to, but when you have worked with it for a while you will enjoy its power
and realize it is in fact a little language inside Java itself. Camel is theonly integration
framework we are aware of that has Java DSL, all the others are usuallyonly XML based.

As an end-user you usually use theRouteBuilder as of follows:
�� create your own Route class that extendsRouteBuilder
�� implement your routing DSL in theconfigure method

So we create a new class ReportIncidentRoutes and implement the first part of the routing:

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// direct:start is a internal queue to kick-start the routing in our example
// we use this as the starting point where you can send messages to

direct:start
from("direct:start")

// to is the destination we send the message to our velocity endpoint
// where we transform the mail body
.to("velocity:MailBody.vm");

}

}

What to notice here is theconfigure method. Here is where all the action is. Here we have
the Java DSL langauge, that is expressed using thefluent builder syntax that is also known
from Hibernate when you build the dynamic queries etc. What you do is that you can stack
methods separating with the dot.

TUTORIALS 142

In the example above we have a very common routing, that can be distilled from pseudo
verbs to actual code with:

�� from A to B
�� From Endpoint A To Endpoint B
�� from("endpointA").to("endpointB")
�� from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It will wait for
messages to arrive on thedirect queue and then dispatch the message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity
generate the mail body response.

So what we have implemented so far with our ReportIncidentRoutes RouteBuilder is this
part of the picture:

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the
hearth of Camel. So turning back to our webservice implementation class
ReportIncidentEndpointImpl we add this constructor to the code, to create the CamelContext
and add the routes from our route builder and finally to start it.

private CamelContext context;

public ReportIncidentEndpointImpl() throws Exception {
// create the context
context = new DefaultCamelContext();

// append the routes to the context
context.addRoutes(new ReportIncidentRoutes());

// at the end start the camel context
context.start();

}

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to
send messages to Endpoints, so we just send to thedirect:start endpoint and it will take it
from there.
So we implement the logic in our webservice operation:

143 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Direct

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate().sendBody("direct:start" ,

parameters);
System .out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Notice that we get the producer template using thecreateProducerTemplate method on
the CamelContext. Then we send the input parameters to thedirect:start endpoint and it
will route it to the velocity endpoint that will generate the mail body. Since we usedirect as
the consumer endpoint (=from) and its asynchronous exchange we will get the response
back from the route. And the response is of course the output from the velocity endpoint.
We have now completed this part of the picture:

UNIT TESTING

Now is the time we would like to unit test what we got now. So we call for camel and its great
test kit. For this to work we need to add it to the pom.xml

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-core </artifactId>
<version> 1.4.0 </version>
<scope> test </scope>
<type> test-jar </type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar.
Then we are ready to create out unit test class.
We create this unit test skeleton, where weextend this classContextTestSupport

TUTORIALS 144

About creating ProducerTemplate
In the example above we create a newProducerTemplate when the
reportIncident method is invoked. However in reality you should only create
the template once and re-use it. See thisFAQ entry.

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/

public class ReportIncidentRoutesTest extends ContextTestSupport {

}

ContextTestSupport is a supporting unit test class for much easier unit testing with
Apache Camel. The class is extending JUnit TestCase itself so you get all its glory. What we
need to do now is to somehow tell this unit test class that it should use our route builder as
this is the one we gonna test. So we do this by implementing thecreateRouteBuilder
method.

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new ReportIncidentRoutes();
}

That is easy just return an instance of our route builder and this unit test will use our routes.
We then code our unit test method that sends a message to the route and assert that its
transformed to the mail body using the Velocity template.

public void testTransformMailBody() throws Exception {
// create a dummy input with some input data
InputReportIncident parameters = createInput();

// send the message (using the sendBody method that takes a parameters as the
input body)

// to "direct:start" that kick-starts the route
// the response is returned as the out object, and its also the body of the

response
Object out = context.createProducerTemplate().sendBody("direct:start" ,

parameters);

// convert the response to a string using camel converters. However we could

145 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Why+does+Camel+use+too+many+threads+with+ProducerTemplate

It is quite common in Camel itself to unit test using routes defined as an anonymous
inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// TODO: Add your routes here, such as:
from("jms:queue:inbox").to("file: //target/out");

}
};

}

The same technique is of course also possible for end-users of Camel to create parts of your
routes and test them separately in many test classes.
However in this tutorial we test the real route that is to be used for production, so we just
return an instance of the real one.

also have casted it to
// a string directly but using the type converters ensure that Camel can

convert it if it wasn't a string
// in the first place. The type converters in Camel is really powerful and you

will later learn to
// appreciate them and wonder why its not build in Java out-of-the-box
String body = context.getTypeConverter().convertTo(String .class, out);

// do some simple assertions of the mail body
assertTrue(body.startsWith("Incident 123 has been reported on the 2008-07-16

by Claus Ibsen."));
}

/**
* Creates a dummy request to be used for input
*/

protected InputReportIncident createInput() {
InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");
return input;

}

TUTORIALS 146

ADDING THE FILE BACKUP

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn
back to our route and the EIP patterns. We use thePipes and Filterspattern here to chain the
routing as:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// using pipes-and-filters we send the output from the previous to the next
.to("file: //target/subfolder");

}

Notice that we just add a 2nd.to on the newline. Camel will default use thePipes and Filters
pattern here when there are multi endpoints chained liked this. We could have used the
pipeline verb to let out stand out that its thePipes and Filterspattern such as:

from("direct:start")
// using pipes-and-filters we send the output from the previous to the next
.pipeline("velocity:MailBody.vm" , "file: //target/subfolder");

But most people are using the multi.to style instead.

We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the fileproducerendpoint and thus a file should also be created as the
backup file. If we look in thetarget/subfolder we can see that something happened.
On my humble laptop it created this folder:target\subfolder\ID-claus-acer . So the file
producer create a sub folder namedID-claus-acer what is this? Well Camel auto
generates an unique filename based on the unique message id if not given instructions to use a
fixed filename. In fact it creates another sub folder and name the file as: target\subfolder\ID-
claus-acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What we want is
to use our own filename instead of this auto generated filename. This is archived by adding a
header to the message with the filename to use. So we need to add this to our route and
compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant
filename, just to verify that we are on the right path, to instruct the file producer what filename
to use. The file producer uses a special headerFileComponent.HEADER_FILE_NAME to
set the filename.

147 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters

What we do is to send the header when we "kick-start" the routing as the header will be
propagated from the direct queue to the file producer. What we need to do is to use the
ProducerTemplate.sendBodyAndHeader method that takesboth a body and a
header. So we change out webservice code to include the filename also:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate();
// send the body and the filename defined with the special header key
Object mailBody = producer.sendBodyAndHeader("direct:start" , parameters,

FileComponent.HEADER_FILE_NAME, "incident.txt");
System .out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

However we could also have used the route builder itself to configure the constant filename as
shown below:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// set the filename to a constant before the file producer receives the

message
.setHeader(FileComponent.HEADER_FILE_NAME, constant("incident.txt"))
.to("file: //target/subfolder");

}

But Camel can be smarter and we want to dynamic set the filename based on some of the input
parameters, how can we do this?
Well the obvious solution is to compute and set the filename from the webservice
implementation, but then the webservice implementation has such logic and we want this
decoupled, so we could create our own POJO bean that has a method to compute the
filename. We could then instruct the routing to invoke this method to get the computed
filename. This is a string feature in Camel, itsBeanbinding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no
dependencies to Camel what so ever.

/**
* Plain java class to be used for filename generation based on the reported incident

TUTORIALS 148

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

*/
public class FilenameGenerator {

public String generateFilename(InputReportIncident input) {
// compute the filename
return "incident-" + input.getIncidentId() + ".txt" ;

}

}

The class is very simple and we could easily create unit tests for it to verify that it works as
expected. So what we want now is to let Camel invoke this class and its generateFilename with
the input parameters and use the output as the filename. Pheeeww is this really possible out-of-
the-box in Camel? Yes it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using theBean Language:

public void configure() throws Exception {
from("direct:start")

// set the filename using the bean language and call the FilenameGenerator
class.

// the 2nd null parameter is optional methodname, to be used to avoid
ambiguity.

// if not provided Camel will try to figure out the best method to invoke,
as we

// only have one method this is very simple
.setHeader(FileComponent.HEADER_FILE_NAME,

BeanLanguage.bean(FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file: //target/subfolder");

}

Notice that we use thebean language where we supply the class with our bean to invoke.
Camel will instantiate an instance of the class and invoke the suited method. For completeness
and ease of code readability we add the method name as the 2nd parameter

.setHeader(FileComponent.HEADER_FILE_NAME,
BeanLanguage.bean(FilenameGenerator.class, "generateFilename"))

Then other developers can understand what the parameter is, instead ofnull .

Now we have a nice solution, but as a sidetrack I want to demonstrate the Camel has other
languages out-of-the-box, and that scripting language is a first class citizen in Camel where it etc.
can be used in content based routing. However we want it to be used for the filename
generation.

149 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message
header when we "kick-start" the route. But we want to learn new stuff so we look for a
different solution using some of Camels manyLanguages. AsOGNL is a favorite language of
mine (used by WebWork) so we pick this baby for a Camel ride. For starters we must add it
to our pom.xml:

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-ognl </artifactId>
<version> ${camel-version} </version>

</dependency>

And remember to refresh your editor so you got the new .jars.
We want to construct the filename based on this syntax:mail-incident-#ID#.txt
where #ID# is the incident id from the input parameters. AsOGNL is a language that can
invoke methods on bean we can invoke thegetIncidentId() on the message body and
then concat it with the fixed pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:

�� request is the IN message. See theOGNL for other predefined objects
available

�� body is the body of the in message
�� incidentId will invoke thegetIncidentId() method on the body.

The rest is just more or less regular plain code where we can concat
strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on
our route so we turn back to our route, where we can add the OGNL expression:

public void configure() throws Exception {
from("direct:start")

// we need to set the filename and uses OGNL for this
.setHeader(FileComponent.HEADER_FILE_NAME,

OgnlExpression.ognl("'mail-incident-' + request.body.incidentId + '.txt'"))

TUTORIALS 150

https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL

// using pipes-and-filters we send the output from the previous
to the next

.pipeline("velocity:MailBody.vm" , "file: //target/subfolder");
}

And since we are on Java 1.5 we can use the static import ofognl so we have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;
...

.setHeader(FileComponent.HEADER_FILE_NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as theBean Language
we used previously.

Whatever worked for you we have now implemented the backup of the data files:

SENDING THE EMAIL

What we need to do before the solution is completed is to actually send the email with the mail
body we generated and stored as a file. In the previous part we did this with aFileconsumer,
that we manually added to the CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// first part from the webservice -> file backup
from("direct:start")

.setHeader(FileComponent.HEADER_FILE_NAME, bean(FilenameGenerator.class,
"generateFilename"))

.to("velocity:MailBody.vm")

.to("file: //target/subfolder");

151 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

// second part from the file backup -> send email
from("file: //target/subfolder")

// set the subject of the email
.setHeader("subject" , constant(" new incident reported"))
// send the email
.to("smtp: //someone@localhost?password=secret&to=incident@mycompany.com");

}

}

The last 3 lines of code does all this. It adds a file consumerfrom("file://target/
subfolder") , sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

CONCLUSION

We have just briefly touched therouting in Camel and shown how to implement them using
the fluent builder syntax in Java. There is much more to the routing in Camel than shown
here, but we are learning step by step. We continue in part 5. See you there.

RESOURCES

¥ Name Size Creator Creation Date Comment

part-four.zip 11 kB Claus Ibsen Aug 25, 2008 07:24

LINKS

�� Introduction
�� Part 1
�� Part 2
�� Part 3

TUTORIALS 152

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=name
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=size
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4?sortBy=createddate
https://cwiki.apache.org/confluence/download/attachments/93043/part-four.zip
https://cwiki.apache.org/confluence/display/~davsclaus
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3

�� Part 4
�� Part 5

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This
article shows how to use Apache Camel to provide a better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using Camel for JMS is
still a good idea if you want to use the rich feature of Camel for routing and other Integration
Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some additional info on
Christian SchneiderÂ´s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using theCamel transport for CXF. This is a camel
module that registers with cxf as a new transport. It is quite easy to configure.

<bean class= "org.apache.camel.component.cxf.transport.CamelTransportFactory" >
<property name= "bus" ref= "cxf" />
<property name= "camelContext" ref= "camelContext" />
<property name= "transportIds" >

<list>
<value>http: //cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in
CXF address configurations. The bean references a bean cxf which will be already present in
your config. The other refrenceis a camel context. We will later define this bean to provide the
routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As
ConnectionFactory you can simply set up the normal Factory your JMS provider offers orbind
a JNDI ConnectionFactory. In this example we use the ConnectionFactory provided by
ActiveMQ.

153 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
https://cwiki.apache.org/confluence/display/CXF20DOC/Using+the+JMSConfigFeature
https://cwiki.apache.org/confluence/display/CXF20DOC/Using+the+JMSConfigFeature
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single

<bean id= "jmsConnectionFactory" class= "org.apache.activemq.ActiveMQConnectionFactory" >
<property name= "brokerURL" value= "tcp: //localhost:61616" />

</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply
call jms. If we need several JMSComponents we can differentiate them by their name.

<bean id= "jms" class= "org.apache.camel.component.jms.JmsComponent" >
<property name= "connectionFactory" ref= "jmsConnectionFactory" />
<property name= "useMessageIDAsCorrelationID" value= " true " />

</bean>

You can find more details about theJMSComponent at the Camel Wiki. For example you find
the complete configuration options and a JNDI sample there.

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl.
The webservice client will be configured to use JMS directly. You can also use a direct: Endpoint
and do the routing to JMS in the Camel Context.

<client id= "CustomerService" xmlns= "http: //cxf.apache.org/jaxws"
xmlns:customer= "http://customerservice.example.com/"

serviceName= "customer:CustomerServiceService"
endpointName= "customer:CustomerServiceEndpoint"
address= "camel:jms:queue:CustomerService"
serviceClass= "com.example.customerservice.CustomerService" >

</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl.
The names we use are arbitrary and have no further function but we set them to look nice. The
serviceclass points to the service interface that was generated from the wsdl. Now the
important thing is address. Here we tell cxf to use the camel transport, use the JmsComponent
who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext

As we do not need additional routing an emptyCamelContextbean will suffice.

<camelContext id= "camelContext" xmlns= "http: //activemq.apache.org/camel/schema/spring" >
</camelContext>

TUTORIALS 154

http://activemq.apache.org/camel/jms.html
http://activemq.apache.org/camel/spring.html

Running the Example

¥ Download the example project here
¥ Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while
being able to also use the rich integration features of Apache Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL

¥ Tutorial using Axis 1.4 with Apache Camel
¥ Prerequisites
¥ Distribution
¥ Introduction
¥ Setting up the project to run Axis
¥ Maven 2
¥ wsdl
¥ Configuring Axis
¥ Running the Example
¥ Integrating Spring
¥ Using Spring
¥ Integrating Camel
¥ CamelContext
¥ Store a file backup
¥ Running the example
¥ Unit Testing
¥ Smarter Unit Testing with Spring
¥ Unit Test calling WebService
¥ Annotations
¥ The End
¥ See Also

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel 1.5 distribution asexamples/camel-example-
axis .

155 TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/95908/cxfcamelexample.zip?version=2&modificationDate=1219861188000

Introduction

Apache Axisis/was widely used as a webservice framework. So in line with some of the other
tutorials to demonstrate how Camel is not an invasive framework but is flexible and integrates
well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4 deployed as web
applications. This is a common solution. We use contract first so we have Axis generated
source code from an existing wsdl file. Then we show how we introduce Spring and Camel to
integrate with Axis.

This tutorial uses the following frameworks:
¥ Maven 2.0.9
¥ Apache Camel 1.5.0
¥ Apache Axis 1.4
¥ Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or
Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId> org.apache.axis </groupId>
<artifactId> axis </artifactId>
<version> 1.4 </version>

</dependency>

<dependency>
<groupId> org.apache.axis </groupId>
<artifactId> axis-jaxrpc </artifactId>
<version> 1.4 </version>

</dependency>

<dependency>
<groupId> org.apache.axis </groupId>
<artifactId> axis-saaj </artifactId>
<version> 1.4 </version>

</dependency>

<dependency>
<groupId> axis </groupId>
<artifactId> axis-wsdl4j </artifactId>
<version> 1.5.1 </version>

</dependency>

TUTORIALS 156

http://ws.apache.org/axis/

<dependency>
<groupId> commons-discovery </groupId>
<artifactId> commons-discovery </artifactId>
<version> 0.4 </version>

</dependency>

<dependency>
<groupId> log4j </groupId>
<artifactId> log4j </artifactId>
<version> 1.2.14 </version>

</dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the
source code based on the wsdl file:

<!-- to compile with 1.5 -->
<plugin>

<groupId> org.apache.maven.plugins </groupId>
<artifactId> maven-compiler-plugin </artifactId>
<configuration>

<source> 1.5 </source>
<target> 1.5 </target>

</configuration>
</plugin>

<plugin>
<groupId> org.codehaus.mojo </groupId>
<artifactId> axistools-maven-plugin </artifactId>
<configuration>

<sourceDirectory> src/main/resources/ </sourceDirectory>
<packageSpace> com.mycompany.myschema </packageSpace>
<testCases> false </testCases>
<serverSide> true </serverSide>
<subPackageByFileName> false </subPackageByFileName>

</configuration>
<executions>

<execution>
<goals>

<goal> wsdl2java </goal>
</goals>

</execution>
</executions>

</plugin>

wsdl

We use the same .wsdl file as theTutorial-Example-ReportIncidentand copy it tosrc/main/
webapp/WEB-INF/wsdl

157 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident

<?xml version= "1.0" encoding= "ISO-8859-1" ?>
<wsdl:definitions xmlns:soap ="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns ="http://reportincident.example.camel.apache.org"
xmlns:xs ="http://www.w3.org/2001/XMLSchema"
xmlns:http ="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl ="http://schemas.xmlsoap.org/wsdl/"
targetNamespace= "http://reportincident.example.camel.apache.org" >

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace= "http://reportincident.example.camel.apache.org" >

<xs:element name= "inputReportIncident" >
<xs:complexType>

<xs:sequence>
<xs:element type= "xs:string"

name="incidentId" />
<xs:element type= "xs:string"

name="incidentDate" />
<xs:element type= "xs:string"

name="givenName" />
<xs:element type= "xs:string"

name="familyName" />
<xs:element type= "xs:string"

name="summary" />
<xs:element type= "xs:string"

name="details" />
<xs:element type= "xs:string"

name="email" />
<xs:element type= "xs:string"

name="phone" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name= "outputReportIncident" >

<xs:complexType>
<xs:sequence>

<xs:element type= "xs:string"
name="code" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name= "inputReportIncident" >

<wsdl:part name= "parameters" element= "tns:inputReportIncident" />
</wsdl:message>
<wsdl:message name= "outputReportIncident" >

<wsdl:part name= "parameters" element= "tns:outputReportIncident" />
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name= "ReportIncidentEndpoint" >

TUTORIALS 158

<wsdl:operation name= "ReportIncident" >
<wsdl:input message= "tns:inputReportIncident" />
<wsdl:output message= "tns:outputReportIncident" />

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name= "ReportIncidentBinding" type= "tns:ReportIncidentEndpoint" >
<soap:binding transport= "http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name= "ReportIncident" >

<soap:operation

soapAction= "http://reportincident.example.camel.apache.org/ReportIncident"
style= "document" />

<wsdl:input>
<soap:body parts= "parameters" use= "literal" />

</wsdl:input>
<wsdl:output>

<soap:body parts= "parameters" use= "literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name= "ReportIncidentService" >

<wsdl:port name= "ReportIncidentPort"
binding= "tns:ReportIncidentBinding" >

<soap:address
location= "http://reportincident.example.camel.apache.org" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For
now we are still only using standard Axis and not Spring nor Camel. We still need to setup Axis
as a web application so we configure the web.xml insrc/main/webapp/WEB-INF/
web.xml as:

<servlet>
<servlet-name> axis </servlet-name>
<servlet-class> org.apache.axis.transport.http.AxisServlet </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> axis </servlet-name>

159 TUTORIALS

<url-pattern> /services/* </url-pattern>
</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet
mapping. We still need to configure Axis itself and this is done using its special configuration file
server-config.wsdd . We nearly get this file for free if we let Axis generate the source
code so we run the maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files to the following
folder:

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our
webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where we can
implement our code logic what happens when the webservice is invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService implements ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

System .out.println("Hello AxisReportIncidentService is called from " +
parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();

TUTORIALS 160

out.setCode("OK");
return out;

}

}

Now we need to configure Axis itself and this is done using itsserver-config.wsdd file.
We nearly get this for for free from the auto generated code, we copy the stuff from
deploy.wsdd and made a few modifications:

<?xml version= "1.0" encoding= "UTF-8" ?>
<deployment xmlns= "http://xml.apache.org/axis/wsdd/" xmlns:java ="http://xml.apache.org/
axis/wsdd/providers/java" >

<!-- global configuration -->
<globalConfiguration>

<parameter name= "sendXsiTypes" value= "true" />
<parameter name= "sendMultiRefs" value= "true" />
<parameter name= "sendXMLDeclaration" value= "true" />
<parameter name= "axis.sendMinimizedElements" value= "true" />

</globalConfiguration>
<handler name= "URLMapper" type= "java:org.apache.axis.handlers.http.URLMapper" />

<!-- this service is from deploy.wsdd -->
<service name= "ReportIncidentPort" provider= "java:RPC" style= "document"

use= "literal" >
<parameter name= "wsdlTargetNamespace"

value= "http://reportincident.example.camel.apache.org" />
<parameter name= "wsdlServiceElement" value= "ReportIncidentService" />
<parameter name= "schemaUnqualified"

value= "http://reportincident.example.camel.apache.org" />
<parameter name= "wsdlServicePort" value= "ReportIncidentPort" />
<parameter name= "className"

value= "org.apache.camel.example.reportincident.ReportIncidentBindingImpl" />
<parameter name= "wsdlPortType" value= "ReportIncidentService" />
<parameter name= "typeMappingVersion" value= "1.2" />
<operation name= "reportIncident" qname="ReportIncident"

returnQName= "retNS:outputReportIncident"
xmlns:retNS ="http://reportincident.example.camel.apache.org"

returnType= "rtns:>outputReportIncident"
xmlns:rtns ="http://reportincident.example.camel.apache.org"

soapAction= "http://reportincident.example.camel.apache.org/
ReportIncident" >

<parameter qname= "pns:inputReportIncident"
xmlns:pns ="http://reportincident.example.camel.apache.org"

type= "tns:>inputReportIncident"
xmlns:tns ="http://reportincident.example.camel.apache.org" />

</operation>
<parameter name= "allowedMethods" value= "reportIncident" />

<typeMapping
xmlns:ns ="http://reportincident.example.camel.apache.org"
qname="ns:>outputReportIncident"

161 TUTORIALS

type= "java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer= "org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer= "org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
<typeMapping

xmlns:ns ="http://reportincident.example.camel.apache.org"
qname="ns:>inputReportIncident"
type= "java:org.apache.camel.example.reportincident.InputReportIncident"
serializer= "org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer= "org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
</service>

<!-- part of Axis configuration -->
<transport name= "http" >

<requestFlow>
<handler type= "URLMapper" />
<handler

type= "java:org.apache.axis.handlers.http.HTTPAuthHandler" />
</requestFlow>

</transport>
</deployment>

TheglobalConfiguration andtransport is not in the deploy.wsdd file so you gotta write
that yourself. Theservice is a 100% copy from deploy.wsdd. Axis has more configuration to it
than shown here, but then you should check theAxis documentation.

What we need to do now is important, as we need to modify the above configuration to use
our webservice class than the default one, so we change the classname parameter to our class
AxisReportIncidentService :

<parameter name= "className"
value= "org.apache.camel.example.axis.AxisReportIncidentService" />

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web
container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL:http://localhost:8080/
camel-example-axis/services and you should see the famous Axis start page with the
text And now... Some Services .

TUTORIALS 162

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not
our original .wsdl file. So we need to fix this ASAP and this is done by configuring Axis in the
server-config.wsdd file:

<service name= "ReportIncidentPort" provider= "java:RPC" style= "document"
use= "literal" >

<wsdlFile> /WEB-INF/wsdl/report_incident.wsdl </wsdlFile>
...

We do this by adding the wsdlFile tag in the service element where we can point to the real
.wsdl file.

Integrating Spring

First we need to add its dependencies to thepom.xml .

<dependency>
<groupId> org.springframework </groupId>
<artifactId> spring-web </artifactId>
<version> 2.5.5 </version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context
parameter to be able to configure precisely what spring xml files to use:

<context-param>
<param-name> contextConfigLocation </param-name>
<param-value>

classpath:axis-example-context.xml
</param-value>

</context-param>

<listener>

<listener-class> org.springframework.web.context.ContextLoaderListener </listener-class>
</listener>

Next is to add a plain spring XML file namedaxis-example-context.xml in the src/main/
resources folder.

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

163 TUTORIALS

The spring XML file is currently empty. We hit jetty again withmvn jetty:run just to make
sure Spring was setup correctly.

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so
we can get access to the glory spring, but how do we do this? And our webservice class
AxisReportIncidentService is created and managed by Axis we want to let Spring do this. So we
have two problems.

We solve these problems by creating a delegate class that Axis creates, and this delegate
class gets hold on Spring and then gets our real webservice as a spring bean and invoke the
service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is
our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System .out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

So now we need to get from AxisReportIncidentService to this one ReportIncidentService using
Spring. Well first of all we add our real service to spring XML configuration file so Spring can
handle its lifecycle:

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

TUTORIALS 164

<bean id= "incidentservice"
class= "org.apache.camel.example.axis.ReportIncidentService" />

</beans>

And then we need to modify AxisReportIncidentService to use Spring to lookup the spring bean
id="incidentservice" and delegate the call. We do this by extending the spring class
org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// get hold of the spring bean from the application context
ReportIncidentService service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");

// delegate to the real service
return service.reportIncident(parameters);

}

}

To see if everything is okay we runmvn jetty:run .

In the code above we get hold of our service at each request by looking up in the application
context. However Spring also supports aninit method where we can do this once. So we
change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

private ReportIncidentService service;

@Override
protected void onInit() throws ServiceException {

165 TUTORIALS

// get hold of the spring bean from the application context
service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");
}

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// delegate to the real service
return service.reportIncident(parameters);

}

}

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the mavenpom.xml file:

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-core </artifactId>
<version> 1.5.0 </version>

</dependency>

<dependency>
<groupId> org.apache.camel </groupId>
<artifactId> camel-spring </artifactId>
<version> 1.5.0 </version>

</dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works
well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel namespace and the
schema location:

xmlns:camel= "http: //activemq.apache.org/camel/schema/spring"
http: //activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/
spring/camel-spring.xsd"

CamelContext

CamelContextis the heart of Camel its where all theroutes, endpoints, components, etc. is
registered. So we setup aCamelContextand the spring XML files looks like:

TUTORIALS 166

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

Camel does not require Spring
Camel does not require Spring, we could easily have used Camel without Spring,
but most users prefer to use Spring also.

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel ="http://activemq.apache.org/camel/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/
camel/schema/spring/camel-spring.xsd">

<bean id= "incidentservice"
class= "org.apache.camel.example.axis.ReportIncidentService" />

<camel:camelContext id= "camel" >
<!-- TODO: Here we can add Camel stuff -->

</camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we
want to send the file content as amessageto an endpointthat produces thefile. So we need to
do two steps:

�� configure the file backup endpoint
�� send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id= "camelContext" >
<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id= "backup" uri= "file://target?append=false" />

</camel:camelContext>

In theCamelContextwe have defined our endpoint with the idbackup and configured it use
the URL notationthat we know from the internet. Its afile scheme that accepts a context
and some options. The contest istarget and its the folder to store the file. The option is just
as the internet with ? and & for subsequent options. We configure it to not append, meaning
than any existing file will be overwritten. See theFilecomponent for options and how to use
the camel file endpoint.

167 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+configure+endpoints
https://cwiki.apache.org/confluence/display/CAMEL/File

Next up is to be able to send a message to this endpoint. The easiest way is to use a
ProducerTemplate. A ProducerTemplate is inspired by Spring template pattern with for
instance JmsTemplate or JdbcTemplate in mind. The template that all the grunt work and
exposes a simple interface to the end-user where he/she can set the payload to send. Then the
template will do proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well theCamelContextis able to provide one. This is done by
configuring the template on the camel context in the spring XML as:

<camel:camelContext id= "camelContext" >
<!-- producer template exposed with this id -->
<camel:template id= "camelTemplate" />

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id= "backup" uri= "file://target?append=false" />

</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java
code as:

public class ReportIncidentService {

private ProducerTemplate template;

public void setTemplate(ProducerTemplate template) {
this .template = template;

}

And then let Spring handle the dependency inject as below:

<bean id= "incidentservice"
class= "org.apache.camel.example.axis.ReportIncidentService" >

<!-- set the producer template to use from the camel context below -->
<property name= "template" ref= "camelTemplate" />

</bean>

Now we are ready to use the producer template in our service to send the payload to the
endpoint. The template has manysendXXX methods for this purpose. But before we send
the payload to the file endpoint we must also specify what filename to store the file as. This is
done by sending meta data with the payload. In Camel metadata is sent as headers. Headers is
just a plainMap<String, Object> . So if we needed to send several metadata then we
could construct an ordinary HashMap and put the values in there. But as we just need to send
one header with the filename Camel has a convenient send methodsendBodyAndHeader so
we choose this one.

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System .out.println("Hello ReportIncidentService is called from " +

TUTORIALS 168

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

parameters.getGivenName());

String data = parameters.getDetails();

// store the data as a file
String filename = parameters.getIncidentId() + ".txt" ;
// send the data to the endpoint and the header contains what filename it

should be stored as
template.sendBodyAndHeader("backup" , data, "org.apache.camel.file.name" ,

filename);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

The template in the code above uses 4 parameters:
�� the endpoint name, in this case the id referring to the endpoint defined in Spring XML

in the camelContext element.
�� the payload, can be any kind of object
�� the key for the header, in this case a Camel keyword to set the filename
�� and the value for the header

Running the example

We start our integration with maven usingmvn jetty:run . Then we open a browser and
hit http://localhost:8080 . Jetty is so smart that it display a frontpage with links to the
deployed application so just hit the link and you get our application. Now we hit append
/services to the URL to access the Axis frontpage. The URL should be
http://localhost:8080/camel-example-axis/services .

You can then test it using a web service test tools such asSoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

169 TUTORIALS

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

Unit Testing

We would like to be able to unit test ourReportIncidentService class. So we add junit to
the maven dependency:

<dependency>
<groupId> junit </groupId>
<artifactId> junit </artifactId>
<version> 3.8.2 </version>
<scope> test </scope>

</dependency>

And then we create a plain junit testcase for our service class.

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Unit test of service
*/

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK" , output.getCode());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

}

Then we can run the test with maven using:mvn test . But we will get a failure:

TUTORIALS 170

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:
testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message
to the file endpoint so the message will be stored in a file. What we need is to get hold of such
a producer and inject it on our service, by calling the setter.

Since Camel is very light weight and embedable we are able to create a CamelContext and
add the endpoint in our unit test code directly. We do this to show how this is possible:

private CamelContext context;

@Override
protected void setUp() throws Exception {

super .setUp();
// CamelContext is just created like this
context = new DefaultCamelContext();

// then we can create our endpoint and set the options
FileEndpoint endpoint = new FileEndpoint();
// the endpoint must have the camel context set also
endpoint.setCamelContext(context);
// our output folder
endpoint.setFile(new File("target"));
// and the option not to append
endpoint.setAppend(false);

// then we add the endpoint just in java code just as the spring XML, we
register it with the "backup" id.

context.addSingletonEndpoint("backup" , endpoint);

// finally we need to start the context so Camel is ready to rock
context.start();

}

@Override
protected void tearDown() throws Exception {

super .tearDown();
// and we are nice boys so we stop it to allow resources to clean up
context.stop();

}

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that
baby from the CamelContext as:

171 TUTORIALS

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

// get a producer template from the camel context
ProducerTemplate template = context.createProducerTemplate();
// inject it on our service using the setter
service.setTemplate(template);

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK" , output.getCode());

}

And this time when we run the unit test its a success:

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists" , file.exists());

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we
would like our unit test to use our spring configuration fileaxis-example-context.xml
where we already have setup the endpoint. And of course we would like to test using this
configuration file as this is the real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path for unit testing.
First we add the spring-test jar to our maven dependency:

<dependency>
<groupId> org.springframework </groupId>
<artifactId> spring-test </artifactId>
<scope> test </scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to
extendAbstractJUnit38SpringContextTests instead ofTestCase in our unit test.
Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml
configuration file is located:

TUTORIALS 172

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is theclasspath: prefix as our xml file is located insrc/
main/resources . If we omit the prefix then Spring will by default try to locate the xml file
in the current package and that is org.apache.camel.example.axis. If the xml file is located
outside the classpath you can use file: prefix instead. So with these two modifications we can
get rid of all the setup and teardown code we had before and now we will test our real
configuration.

The last change is to get hold of the producer template and now we can just refer to the
bean id it has in the spring xml file:

<!-- producer template exposed with this id -->
<camel:template id= "camelTemplate" />

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is
used to do:

// get a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)

applicationContext.getBean("camelTemplate");
// inject it on our service using the setter
service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring
and you can use standard Spring'ish unit test to test your Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the
AxisReportIncidentService how do we unit test this one? Well first of all the code is
merely just a delegate to our real service that we have just tested, but nevertheless its a good
question and we would like to know how. Well the answer is that we can exploit that fact that
Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add
this to our pom.xml:

<dependency>
<groupId> org.mortbay.jetty </groupId>
<artifactId> jetty </artifactId>
<version> ${jetty-version} </version>
<scope> test </scope>

</dependency>

173 TUTORIALS

Then we can create a new classAxisReportIncidentServiceTest to unit test with Jetty.
The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {

private Server server;

private void startJetty() throws Exception {
// create an embedded Jetty server
server = new Server();

// add a listener on port 8080 on localhost (127.0.0.1)
Connector connector = new SelectChannelConnector();
connector.setPort(8080);
connector.setHost("127.0.0.1");
server.addConnector(connector);

// add our web context path
WebAppContext wac = new WebAppContext();
wac.setContextPath("/unittest");
// set the location of the exploded webapp where WEB-INF is located
// this is a nice feature of Jetty where we can point to src/main/webapp
wac.setWar("./src/main/webapp");
server.setHandler(wac);

// then start Jetty
server.setStopAtShutdown(true);
server.start();

}

@Override
protected void setUp() throws Exception {

super .setUp();
startJetty();

}

@Override
protected void tearDown() throws Exception {

super .tearDown();
server.stop();

}

}

Now we just need to send the incident as a webservice request using Axis. So we add the
following code:

public void testReportIncidentWithAxis() throws Exception {
// the url to the axis webservice exposed by jetty
URL url = new URL("http: //localhost:8080/unittest/services/

ReportIncidentPort");

TUTORIALS 174

// Axis stuff to get the port where we can send the webservice request
ReportIncidentService_ServiceLocator locator = new

ReportIncidentService_ServiceLocator();
ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

// create input to send
InputReportIncident input = createDummyIncident();
// send the webservice and get the response
OutputReportIncident output = port.reportIncident(input);
assertEquals("OK" , output.getCode());

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists" , file.exists());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings
more elegantly. Camel has the endpoint annotation@EndpointInjected that is just what
we need. With this annotation we can inject the endpoint into our service. The annotation
takes either a name or uri parameter. The name is the bean id in theRegistry. The uri is the
URI configuration for the endpoint. Using this you can actually inject an endpoint that you have
not defined in the camel context. As we have defined our endpoint with the idbackup we use
the name parameter.

@EndpointInject(name = "backup")
private ProducerTemplate template;

Camel is smart as@EndpointInjected supports different kinds of object types. We like
the ProducerTemplate so we just keep it as it is.
Since we use annotations on the field directly we do not need to set the property in the spring
xml file so we change our service bean:

175 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

<bean id= "incidentservice"
class= "org.apache.camel.example.axis.ReportIncidentService" />

Running the unit test withmvn test reveals that it works nicely.

And since we use the@EndpointInjected that refers to the endpoint with the id
backup directly we can loose the template tag in the xml, so its shorter:

<bean id= "incidentservice"
class= "org.apache.camel.example.axis.ReportIncidentService" />

<camel:camelContext id= "camelContext" >
<!-- producer template exposed with this id -->
<camel:template id= "camelTemplate" />

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id= "backup" uri= "file://target?append=false" />

</camel:camelContext>

And the final touch we can do is that since the endpoint is injected with concrete endpoint to
use we can remove the"backup" name parameter when we send the message. So we change
from:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader("backup" , data, "org.apache.camel.file.name" ,
filename);

To without the name:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader(data, "org.apache.camel.file.name" , filename);

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget
to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing
and mediation framework. But we wanted to demonstrate its flexibility and that it integrates
well with even older frameworks such as Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.

TUTORIALS 176

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Note that the code shown here also applies to Camel 1.4 so actually you can get started
right away with the released version of Camel. As this time of writing Camel 1.5 is work in
progress.

See Also

�� Tutorials
�� Examples

TUTORIAL ON USING CAMEL IN A WEB APPLICATION

Camel has been designed to work great with theSpringframework; so if you are already a
Spring user you can think of Camel as just a framework for adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to
add the standard Spring hook to load a/WEB-INF/applicationContext.xml file. In that
file you can include your usual Camel XML configuration.

Step1: Edit your web.xml

To enable spring add a context loader listener to your/WEB-INF/web.xml file

<?xml version= "1.0" encoding= "UTF-8" ?>
<web-app xmlns= "http://java.sun.com/xml/ns/javaee"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation= "http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

ns/javaee/web-app_2_5.xsd"
version= "2.5" >

<listener>

<listener-class> org.springframework.web.context.ContextLoaderListener </listener-class>
</listener>

</web-app>

This will cause Spring to boot up and look for the/WEB-INF/applicationContext.xml
file.

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

177 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Tutorials
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Spring

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context ="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "seda:foo" />
<to uri= "mock:results" />

</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you useMavento build your application your directory tree will look like this...

src/main/webapp/WEB-INF
web.xml
applicationContext.xml

To enable more rapid development we hightly recommend thejetty:run maven plugin.

Please refer to thehelp for more information on using jetty:run- but briefly if you add the
following to your pom.xml

<build>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>

<webAppConfig>
<contextPath>/</contextPath>

</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>

</configuration>
</plugin>

</plugins>
</build>

TUTORIALS 178

http://maven.apache.org/
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

Then you can run your web application as follows

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory
so that if you modify your spring XML, your web.xml or your java code the web application will
be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web
application via

mvn -Dtest= false jetty:run

TUTORIAL BUSINESS PARTNERS

BACKGROUND AND INTRODUCTION

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their
customers are responsible for telling Acme what they purchased. The customer enters into
their own systems (ERP or whatever) which widgets they bought from Acme. Then at some
point, their systems emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so there needs to be
integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects,
"you can send us the data in whatever format, using whatever protocols, whatever. You just
can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:
¥ Customer 1:XML over FTP
¥ Customer 2:CSV over HTTP
¥ Customer 3:Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format and submitted
to the Acme accounting system via JMS. Then the Acme accounting system does its stuff and
sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted,
line item #2 in error, total invoice $123.45). Finally, that data needs to be formatted into an e-
mail, and sent to a contact at the customer in question ("Dear Joyce, we received an invoice on
1/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items
#2 [invalid quantity ordered]. Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
¥ Listen for HTTP, e-mail, and FTP files

179 TUTORIALS

Under Construction
This tutorial is a work in progress.

¥ Grab attachments from the e-mail messages
¥ Convert XML, XLS, and CSV files to a canonical XML format
¥ read and write JMS messages
¥ route based on company ID
¥ format e-mails using Velocity templates
¥ send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:
¥ Camel concepts including theCamelContext, Routes, Components and Endpoints,

andEnterprise Integration Patterns
¥ Configuring Camel with theXML or Java DSL

You'll learn:
¥ How to set up a Maven build for a Camel project
¥ How to transform XML, CSV, and Excel data into a standard XML format with Camel

�� How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT
stylesheets that are invoked by Camel routes for message transformation

¥ How to configure simple and complex Routes in Camel, using either the XML or the
Java DSL format

¥ How to set up unit tests that load a Camel configuration and test Camel routes
¥ How to use Camel's Data Formats to automatically convert data between Java objects

and XML, CSV files, etc.
¥ How to send and receive e-mail from Camel
¥ How to send and receive JMS messages from Camel
¥ How to use Enterprise Integration Patterns including Message Router and Pipes and

Filters
�� How to use various languages to express content-based routing rules in

Camel
¥ How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and
configuration files yourself. Each of the sections gives detailed descriptions of the steps that
need to be taken to get the components and routes working in Camel, and takes you through
tests to make sure they are working as expected.

But each section also links to working copies of the source and configuration files, so if you
don't want the hands-on approach, you can simply review and/or download the finished files.

TUTORIALS 180

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext
https://cwiki.apache.org/confluence/display/CAMEL/DSL

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

And then, the output from Acme to the customers:

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and
test those, and then try to assemble the big scenario and test that.

Here's what we'll try to accomplish:
1. Create a Maven build for the project
2. Get sample files for the customer Excel, CSV, and XML input
3. Get a sample file for the canonical XML format that Acme's accounting system uses
4. Create an XSD for the canonical XML format
5. Create JAXB POJOs corresponding to the canonical XSD
6. Create an XSLT stylesheet to convert the Customer 1 (XML over FTP) messages to

the canonical format

181 TUTORIALS

7. Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet
works

8. Create a POJO that converts aList<List<String>> to the above JAXB POJOs
�� Note that Camel can automatically convert CSV input to a List of Lists of

Strings representing the rows and columns of the CSV, so we'll use this
POJO to handle Customer 2 (CSV over HTTP)

9. Create a unit test to ensure that a simple Camel route invoking the CSV processing
works

10. Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs
(using POI to read Excel)

11. Create a unit test to ensure that a simple Camel route invoking the Excel processing
works

12. Create a POJO that reads an input message, takes an attachment off the message, and
replaces the body of the message with the attachment

�� This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains
a single Excel file as an attachment, and the actual e-mail body is throwaway

13. Build a set of Camel routes to handle the entire input (Customer -> Acme) side of
the scenario.

14. Build unit tests for the Camel input.
15. TODO: Tasks for the output (Acme -> Customer) side of the scenario

LET'S GET STARTED!

Step 1: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's
nice to have Maven handle them for us. You should have a current version of Maven (e.g. 2.0.9)
installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple
JAR archetype to create one.

Here's a sample POM. We've added a dependency oncamel-core , and set the compile
version to 1.5 (so we can use annotations):

Listing 8.Listing 8. pom.xmlpom.xml

<?xml version= "1.0" encoding= "UTF-8" ?>
<project xmlns= "http://maven.apache.org/POM/4.0.0" >

<modelVersion> 4.0.0 </modelVersion>
<groupId> org.apache.camel.tutorial </groupId>
<artifactId> business-partners </artifactId>
<version> 1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial </name>
<dependencies>

<dependency>

TUTORIALS 182

<artifactId> camel-core </artifactId>
<groupId> org.apache.camel </groupId>
<version> 1.4.0 </version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<groupId> org.apache.maven.plugins </groupId>
<artifactId> maven-compiler-plugin </artifactId>
<configuration>

<source> 1.5 </source>
<target> 1.5 </target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf" ones. You can save
yourself some time by downloading these tosrc/test/resources in your Maven project.

¥ Customer 1 (XML):input-customer1.xml
¥ Customer 2 (CSV):input-customer2.csv
¥ Customer 3 (Excel):input-customer3.xls
¥ Canonical Acme XML Request:canonical-acme-request.xml
¥ Canonical Acme XML Response:TODO

If you look at these files, you'll see that the different input formats use different field names and/
or ordering, because of course the sales guys were totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version= "1.0" encoding= "UTF-8" ?>
<invoice xmlns= "http://activemq.apache.org/camel/tutorial/partners/invoice" >

<partner-id> 2</partner-id>
<date-received> 9/12/2008 </date-received>
<line-item>

<product-id> 134</product-id>
<description> A widget </description>
<quantity> 3</quantity>
<item-price> 10.45 </item-price>
<order-date> 6/5/2008 </order-date>

</line-item>
<!-- // more line-item elements here -->

183 TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer2.csv?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer3.xls?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xml?version=1&modificationDate=1221319297000

<order-total> 218.82 </order-total>
</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and
save it tosrc/main/xsd .

Solution: If not, you candownload mine, and save that to save it tosrc/main/xsd .

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to
set up those XML binding POJOs. So we'll update the Maven POM to generate JAXB beans
from the XSD file.

We need a dependency:

<dependency>
<artifactId> camel-jaxb </artifactId>
<groupId> org.apache.camel </groupId>
<version> 1.4.0 </version>

</dependency>

And a plugin configured:

<plugin>
<groupId> org.codehaus.mojo </groupId>
<artifactId> jaxb2-maven-plugin </artifactId>
<executions>

<execution>
<goals>

<goal> xjc </goal>
</goals>

</execution>
</executions>

</plugin>

That should do it (it automatically looks for XML Schemas insrc/main/xsd to generate
beans for). Runmvn install and it should emit the beans intotarget/generated-
sources/jaxb . Your IDE should see them there, though you may need to update the
project to reflect the new settings in the Maven POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)

To get a start on Customer 1, we'll create an XSLT template to convert the Customer 1
sample file into the canonical XML format, write a small Camel route to test it, and build that

TUTORIALS 184

https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xsd?version=1&modificationDate=1221569994000

into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and
can be run safely in Camel.

Create an XSLT template

Start with theCustomer 1 sample input. You want to create an XSLT template to generate
XML like the canonical XML sample above Ð aninvoice element withline-item elements
(one per item in the original XML document). If you're especially clever, you can populate the
current date and order total elements too.

Solution: My sample XSLT templateisn't that smart, but it'll get you going if you don't
want to write one of your own.

Create a unit test

Here's where we get to some meaty Camel work. We need to:
¥ Set up a unit test
¥ That loads a Camel configuration
¥ That has a route invoking our XSLT
¥ Where the test sends a message to the route
¥ And ensures that some XML comes out the end of the route

The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then
use a base unit test class from Spring that knows how to load a Spring context to run tests
against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test

1. Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically
bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId> camel-spring </artifactId>
<groupId> org.apache.camel </groupId>
<version> 1.4.0 </version>

</dependency>
<dependency>

<artifactId> spring-test </artifactId>
<groupId> org.springframework </groupId>
<version> 2.5.5 </version>
<scope> test </scope>

</dependency>

2. Create a new unit test class insrc/test/java/your-package-here , perhaps
calledXMLInputTest.java

185 TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLConverter.xsl?version=1&modificationDate=1221329900000

3. Make the test extend Spring'sAbstractJUnit38SpringContextTestsclass, so it can load
a Spring context for the test

4. Create a Spring context configuration file insrc/test/resources , perhaps
calledXMLInputTest-context.xml

5. In the unit test class, use the class-level@ContextConfigurationannotation to
indicate that a Spring context should be loaded

�� By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory corresponding to the
package of the test class. For instance, if your test class was
org.apache.camel.tutorial.XMLInputTest , it would look for
org/apache/camel/tutorial/XMLInputTest-context.xml

�� To override this default, use thelocations attribute on the
@ContextConfiguration annotation to provide specific context file
locations (starting each path with a / if you don't want it to be relative to
the package directory). My solution does this so I can put the context file
directly insrc/test/resources instead of in a package directory
under there.

6. Add aCamelContextinstance variable to the test class, with the@Autowired
annotation. That way Spring will automatically pull the CamelContext out of the
Spring context and inject it into our test class.

7. Add aProducerTemplateinstance variable and asetUp method that instantiates it
from the CamelContext. We'll use the ProducerTemplate later to send messages to
the route.

protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super .setUp();
template = camelContext.createProducerTemplate();

}

8. Put in an empty test method just for the moment (so when we run this we can see
that "1 test succeeded")

9. Add the Spring<beans>element (including theCamel Namespace) with an empty
<camelContext>element to the Spring context, like this:

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/

camel-spring-1.4.0.xsd">

TUTORIALS 186

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext

<camelContext id= "camel" xmlns= "http://activemq.apache.org/camel/schema/
spring" >

</camelContext>
</beans>

Test it by runningmvn install and make sure there are no build errors. So far it doesn't test
much; just that your project and test and source files are all organized correctly, and the one
empty test method completes successfully.

Solution: Your test class might look something like this:
¥ src/test/java/org/apache/camel/tutorial/XMLInputTest.java
¥ src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer 1
input file, and makes sure that some XML output comes out:

1. Save theinput-customer1.xmlfile to src/test/resources
2. Save your XSLT file (created in the previous step) tosrc/main/resources
3. Write a Camel Route, either right in the Spring XML, or using the Java DSL (in

another class undersrc/test/java somewhere). This route should use thePipes
and Filtersintegration pattern to:

1. Start from the endpointdirect:start(which lets the test conveniently pass
messages into the route)

2. Call the endpointxslt:YourXSLTFile.xsl(to transform the message with the
specified XSLT template)

3. Send the result to the endpointmock:finish(which lets the test verify the
route output)

4. Add a test method to the unit test class that:
1. Get a reference to the Mock endpointmock:finish using code like this:

MockEndpoint finish = MockEndpoint.resolve(camelContext,
"mock:finish");

2. Set theexpectedMessageCounton that endpoint to 1
3. Get a reference to the Customer 1 input file, using code like this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
assertNotNull(in);

4. Send that InputStream as a message to thedirect:start endpoint,
using code like this:

187 TUTORIALS

https://cwiki.apache.org/confluence/download/attachments/97175/empty-XMLInputTest.java?version=3&modificationDate=1221648819000
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221319297000
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/XSLT
https://cwiki.apache.org/confluence/display/CAMEL/Mock
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)

template.sendBody("direct:start" , in);

Note that we can send the sample file body in several formats (File,
InputStream, String, etc.) but in this case an InputStream is pretty
convenient.

5. Ensure that the message made it through the route to the final endpoint, by
testing all configured Mock endpointslike this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code like
finish.getExchanges().get(0).getIn().getBody() .

�� If you do this, you'll need to know what format that body is Ð
String, byte array, InputStream, etc.

5. Run your test withmvn install and make sure the build completes successfully.
Solution: Your finished test might look something like this:

¥ src/test/java/org/apache/camel/tutorial/XMLInputTest.java
¥ For XML Configuration:

�� src/test/resources/XMLInputTest-context.xml
¥ Or, for Java DSL Configuration:

�� src/test/resources/XMLInputTest-dsl-context.xml
�� src/test/java/org/apache/camel/tutorial/routes/XMLInputTestRoute.java

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data
into the JAXB POJOs representing the canonical XML format, write a small Camel route to test
it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV
conversion and JAXB handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with,CSV is a known data formatin Camel. Camel can convert a CSV file to a List
(representing rows in the CSV) of Lists (representing cells in the row) of Strings (the data for
each cell). That means our POJO can just assume the data coming in is of type
List<List<String>> , and we can declare a method with that as the argument.

Looking at the JAXB code intarget/generated-sources/jaxb , it looks like an
Invoice object represents the whole document, with a nested list of LineItemType objects
for the line items. Therefore our POJO method will return anInvoice (a document in the
canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:

TUTORIALS 188

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest.java?version=3&modificationDate=1221651730000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-context.xml?version=1&modificationDate=1221574632000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221641531000
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTestRoute.java?version=1&modificationDate=1221641531000
https://cwiki.apache.org/confluence/display/CAMEL/CSV

Test Base Class
Once your test class is working, you might want to extract things like the
@Autowired CamelContext, the ProducerTemplate, and the setUp method to a
custom base class that you extend with your other tests.

1. Create a new class undersrc/main/java , perhaps calledCSVConverterBean .
2. Add a method, with one argument of typeList<List<String>> and the return

type Invoice
�� You mayannotatethe argument with@Bodyto specifically designate it as

the body of the incoming message
3. In the method, the logic should look roughly like this:

1. Create a newInvoice , using the method on the generated
ObjectFactory class

2. Loop through all the rows in the incoming CSV (the outerList)
3. Skip the first row, which contains headers (column names)
4. For the other rows:

1. Create a newLineItemType (using theObjectFactory
again)

2. Pick out all the cell values (the Strings in the innerList) and put
them into the correct fields of theLineItemType

�� Not all of the values will actually go into the line item in
this example

�� You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line

�� Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML Ð which probably means
using aSimpleDateFormat to parse the date and
setting that date on aGregorianCalendar

3. Add the line item to the invoice
5. Populate the partner ID, date of receipt, and order total on theInvoice
6. Throw any exceptions out of the method, so Camel knows something went

wrong
7. Return the finishedInvoice

Solution: Here's an example of what theCSVConverterBeanmight look like.

189 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
https://cwiki.apache.org/confluence/download/attachments/97175/CSVConverterBean.java?version=1&modificationDate=1221648421000

Create a unit test

Start with a simple test class and test Spring context like last time, perhaps based on the name
CSVInputTest :

Listing 9.Listing 9. CSVInputTest.javaCSVInputTest.java

/**
* A test class the ensure we can convert Partner 2 CSV input files to the
* canonical XML output format, using JAXB POJOs.
*/

@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;
protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super .setUp();
template = camelContext.createProducerTemplate();

}

public void testCSVConversion() {
// TODO

}
}

Listing 10.Listing 10. CSVInputTest-context.xmlCSVInputTest-context.xml

<?xml version= "1.0" encoding= "UTF-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"

xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/

camel-spring-1.4.0.xsd">

<camelContext id= "camel" xmlns= "http://activemq.apache.org/camel/schema/spring" >
<!-- TODO -->

</camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.
1. Update the Maven POM to includeCSVData Formatsupport:

<dependency>
<artifactId> camel-csv </artifactId>
<groupId> org.apache.camel </groupId>
<version> 1.4.0 </version>

</dependency>

TUTORIALS 190

https://cwiki.apache.org/confluence/display/CAMEL/CSV
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

2. Write the routes (right in the Spring XML context, or using the Java DSL) for the
CSV conversion process, again using thePipes and Filterspattern:

1. Start from the endpointdirect:CSVstart(which lets the test conveniently
pass messages into the route). We'll name this differently than the starting
point for the previous test, in case you use the Java DSL and put all your
routes in the same package (which would mean that each test would load
the DSL routes for several tests.)

2. This time, there's a little preparation to be done. Camel doesn't know that
the initial input is a CSV, so it won't be able to convert it to the expected
List<List<String>> without a little hint. For that, we need an
unmarshaltransformation in the route. Theunmarshal method (in the
DSL) or element (in the XML) takes a child indicating the format to
unmarshal; in this case that should becsv .

3. Next invoke the POJO to transform the message with a
bean:CSVConverterendpoint

4. As before, send the result to the endpointmock:finish(which lets the test
verify the route output)

5. Finally, we need a Spring<bean> element in the Spring context XML file
(but outside the<camelContext> element) to define the Spring bean
that our route invokes. This Spring bean should have aname attribute that
matches the name used in thebean endpoint (CSVConverter in the
example above), and aclass attribute that points to the CSV-to-JAXB
POJO class you wrote above (such as,
org.apache.camel.tutorial.CSVConverterBean). When
Spring is in the picture, anybean endpoints look up Spring beans with the
specified name.

3. Write a test method in the test class, which should look very similar to the previous
test class:

1. Get the MockEndpoint for the final endpoint, and tell it to expect one
message

2. Load the Partner 2 sample CSV file from the ClassPath, and send it as the
body of a message to the starting endpoint

3. Verify that the final MockEndpoint is satisfied (that is, it received one
message) and examine the message body if you like

�� Note that we didn'tmarshalthe JAXB POJOs to XML in this test,
so the final message should contain anInvoice as the body. You
could write a simple line of code to get the Exchange (and
Message) from the MockEndpoint to confirm that.

4. Run this new test withmvn install and make sure it passes and the build completes
successfully.

Solution: Your finished test might look something like this:
¥ src/test/java/org/apache/camel/tutorial/CSVInputTest.java
¥ For XML Configuration:

191 TUTORIALS

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Unmarshalling
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Marshalling
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest.java?version=2&modificationDate=1221693356000

�� src/test/resources/CSVInputTest-context.xml
¥ Or, for Java DSL Configuration:

�� src/test/resources/CSVInputTest-dsl-context.xml
�� src/test/java/org/apache/camel/tutorial/routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel
data into the JAXB POJOs representing the canonical XML format, write a small Camel route
to test it, and build that into a unit test. If we get through this, we can be pretty sure that the
Excel conversion and JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options Ð create
an ExcelDataFormat(so Camel can convert Excel spreadsheets to something like the CSV
List<List<String>> automatically), or create a POJO that can translate Excel data
manually. For now, the second approach is easier (if we go theDataFormat route, we need
code to both read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like anInputStream or
byte[] as an argument, and returns inInvoice as before. The process should look
something like this:

1. Update the Maven POM to includePOIsupport:

<dependency>
<artifactId> poi </artifactId>
<groupId> org.apache.poi </groupId>
<version> 3.1-FINAL </version>

</dependency>

2. Create a new class undersrc/main/java , perhaps called
ExcelConverterBean .

3. Add a method, with one argument of typeInputStream and the return type
Invoice

�� You mayannotatethe argument with@Bodyto specifically designate it as
the body of the incoming message

4. In the method, the logic should look roughly like this:
1. Create a newInvoice , using the method on the generated

ObjectFactory class
2. Create a newHSSFWorkbookfrom the InputStream , and get thefirst

sheetfrom it
3. Loop throughall the rowsin the sheet
4. Skip the first row, which contains headers (column names)

TUTORIALS 192

https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-context.xml?version=2&modificationDate=1221693356000
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221693356000
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTestRoute.java?version=2&modificationDate=1221693442000
http://activemq.apache.org/camel/maven/camel-core/apidocs/index.html
http://poi.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()

5. For the other rows:
1. Create a newLineItemType (using theObjectFactory

again)
2. Pick outall the cell valuesand put them into the correct fields of

the LineItemType (you'll need some data type conversion
logic)

�� Not all of the values will actually go into the line item in
this example

�� You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line

�� Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML Ð which probably means
setting thedate from a date cellon a
GregorianCalendar

3. Add the line item to the invoice
6. Populate the partner ID, date of receipt, and order total on theInvoice
7. Throw any exceptions out of the method, so Camel knows something went

wrong
8. Return the finishedInvoice

Solution: Here's an example of what theExcelConverterBeanmight look like.

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean
should be quite similar to the CSV bean.

1. Create the basic test class and corresponding Spring Context XML configuration file
2. The XML config should look a lot like the CSV test, except:

�� Remember to use a different start endpoint name if you're using the Java
DSL and not use separate packages per test

�� You don't need theunmarshal step since the Excel POJO takes the raw
InputStream from the source endpoint

�� You'll declare a<bean> and endpoint for the Excel bean prepared above
instead of the CSV bean

3. The test class should look a lot like the CSV test, except use the right input file name
and start endpoint name.

Solution: Your finished test might look something like this:
¥ src/test/java/org/apache/camel/tutorial/ExcelInputTest.java
¥ For XML Configuration:

�� src/test/resources/ExcelInputTest-context.xml

193 TUTORIALS

http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelConverterBean.java?version=1&modificationDate=1221716652000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest.java?version=1&modificationDate=1221746613000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-context.xml?version=1&modificationDate=1221746613000

Logging
You may notice that your tests emit a lot less output all of a sudden. The
dependency on POI brought in Log4J and configured commons-logging to use it, so
now we need alog4j.propertiesfile to configure log output. You can use the
attached one (snarfed from ActiveMQ) or write your own; either way save it to
src/main/resources to ensure you continue to see log output.

¥ Or, for Java DSL Configuration:
�� src/test/resources/ExcelInputTest-dsl-context.xml
�� src/test/java/org/apache/camel/tutorial/routes/ExcelInputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen
for HTTP, FTP, or e-mail input, and write the final XML output to an ActiveMQ queue. Along
the way these routes will use the data conversions we've developed above.

So we'll create 3 routes to start with, as shown in the diagram back at the beginning:
1. Accept XML orders over FTP from Customer 1 (we'll assume the FTP server dumps

files in a local directory on the Camel machine)
2. Accept CSV orders over HTTP from Customer 2
3. Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent

to an account we can access via IMAP)
...

Step 8: Create a unit test for the Customer Input Routes

TUTORIALS 194

https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221746832000
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTestRoute.java?version=1&modificationDate=1221746832000
https://cwiki.apache.org/confluence/download/attachments/97175/log4j.properties?version=1&modificationDate=1221746968000

Languages Supported Appendix

To support flexible and powerfulEnterprise Integration PatternsCamel supports various
Languages to create anExpressionor Predicatewithin either theRouting Domain Specific
Languageor the Xml Configuration. The following languages are supported

BEAN LANGUAGE

The purpose of the Bean Language is to be able to implement anExpressionor Predicateusing
a simple method on a bean.

So the idea is you specify a bean name which will then be resolved in theRegistrysuch as
the SpringApplicationContext then a method is invoked to evaluate theExpressionor
Predicate.

If no method name is provided then one is attempted to be chosen using the rules forBean
Binding; using the type of the message body and using any annotations on the bean methods.

TheBean Bindingrules are used to bind theMessageExchange to the method parameters;
so you can annotate the bean to extract headers or other expressions such asXPathor
XQuery from the message.

Using Bean Expressions from the Java DSL

from("activemq:topic:OrdersTopic").
filter().method("myBean" , "isGoldCustomer").

to("activemq:BigSpendersQueue");

Using Bean Expressions from XML

<route>
<from uri= "activemq:topic:OrdersTopic" />
<filter>

<method bean= "myBean" method= "isGoldCustomer" />
<to uri= "activemq:BigSpendersQueue" />

</filter>
</route>

195 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery

Writing the expression bean

The bean in the above examples is just any old Java Bean with a method called
isGoldCustomer() that returns some object that is easily converted to aboolean value in this
case, as its used as a predicate.

So we could implement it like this...

public class MyBean {
public boolean isGoldCustomer(Exchange exchange) {

...
}

}

We can also use theBean Integrationannotations. For example you could do...

public boolean isGoldCustomer(String body) {...}

or

public boolean isGoldCustomer(@Header(name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, theMessageor individual headers,
properties, the body or other expressions.

Non registry beans

As of Camel 1.5 theBean Languagealso supports invoking beans that isn't registered in the
Registry. This is usable for quickly to invoke a bean from Java DSL where you don't need to
register the bean in theRegistrysuch as theSpringApplicationContext.

Camel can instantiate the bean and invoke the method if given a class or invoke an already
existing instance. This is illustrated from the example below:
NOTE This bean DSL is supported since Camel 2.0-M2

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage(MyBean.class, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

The 2nd parameterisGoldCustomer is an optional parameter to explicit set the method
name to invoke. If not provided Camel will try to invoke the best suited method. If case of
ambiguity Camel will thrown an Exception. In these situations the 2nd parameter can solve this
problem. Also the code is more readable if the method name is provided. The 1st parameter
can also be an existing instance of a Bean such as:

LANGUAGES SUPPORTED APPENDIX196

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage.bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

In Camel 2.2 onwards you can avoid theBeanLanguage and have it just as:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().expression(bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

Which also can be done in a bit shorter and nice way:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().method(my, "isGoldCustomer").
to("activemq:BigSpendersQueue");

Other examples

We have some test cases you can look at if it'll help
¥ MethodFilterTestis a JUnit test case showing the JavaDSLuse of the bean expression

being used in a filter
¥ aggregator.xmlis a Spring XML test case for theAggregatorwhich uses a bean

method call to test for the completion of the aggregation.

Dependencies

The Bean language is part ofcamel-core .

CONSTANT EXPRESSION LANGUAGE

The Constant Expression Language is really just a way to specify constant strings as a type of
expression.

Available as of Camel 1.5

Example usage

The setHeader element of the Spring DSL can utilize a constant expression like:

197 LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MethodFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/DSL
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/aggregator.xml
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator

<route>
<from uri= "seda:a" />
<setHeader headerName= "theHeader" >

<constant>the value</constant>
</setHeader>
<to uri= "mock:b" />

</route>

in this case, theMessagecoming from the seda:aEndpointwill have 'theHeader' header set to
the constant value 'the value'.

And the same example using Java DSL:

from("seda:a").setHeader("theHeader" , constant("the value")).to("mock:b");

Dependencies

The Constant language is part ofcamel-core .

EL

Camel supports the unified JSP and JSF Expression Language via theJUELto allow anExpression
or Predicateto be used in theDSLor Xml Configuration.

For example you could use EL inside aMessage Filterin XML

<route>
<from uri= "seda:foo" />
<filter>

<el> ${in.headers.foo == 'bar'} </el>
<to uri= "seda:bar" />

</filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a valid identifier:

<route>
<from uri= "seda:foo" />
<filter>

<el> ${in.headers['My Header'] == 'bar'} </el>
<to uri= "seda:bar" />

</filter>
</route>

You could use EL to create anPredicatein aMessage Filteror as anExpressionfor a Recipient
List

LANGUAGES SUPPORTED APPENDIX198

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://juel.sourceforge.net/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

Samples

You can use EL dot notation to invoke operations. If you for instance have a body that contains
a POJO that has agetFamiliyName method then you can construct the syntax as follows:

"$in.body.familyName"

Dependencies

To use EL in your camel routes you need to add the a dependency oncamel-juel which
implements the EL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-juel</artifactId>
<version>1.6.1</version>

</dependency>

HEADER EXPRESSION LANGUAGE

The Header Expression Language allows you to extract values of named headers.

Available as of Camel 1.5

Example usage

The recipientList element of the Spring DSL can utilize a header expression like:

<route>
<from uri= "direct:a" />
<!-- use comma as a delimiter for String based values -->
<recipientList delimiter= "," >

199 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download

<header> myHeader </header>
</recipientList>

</route>

In this case, the list of recipients are contained in the header 'myHeader'.

And the same example in Java DSL:

from("direct:a").recipientList(header("myHeader"));

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that header is not a parameter but a stacked
method call)

from("direct:a").recipientList().header("myHeader");

Dependencies

The Header language is part ofcamel-core .

JXPATH

Camel supportsJXPathto allow XPathexpressions to be used on beans in anExpressionor
Predicateto be used in theDSLor Xml Configuration. For example you could use JXPath to
create anPredicatein aMessage Filteror as anExpressionfor a Recipient List.

From 1.3 of Camel onwards you can use XPath expressions directly using smart completion
in your IDE as follows

from("queue:foo").filter().
jxpath("/in/body/foo").
to("queue:bar")

Variables

Variable Type Description

this Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

LANGUAGES SUPPORTED APPENDIX200

http://commons.apache.org/jxpath/
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

Using XML configuration

If you prefer to configure your routes in yourSpringXML file then you can use JXPath
expressions as follows

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id= "camel" xmlns= "http://activemq.apache.org/camel/schema/spring" >
<route>

<from uri= "activemq:MyQueue" />
<filter>

<jxpath> in/body/name = 'James' </xpath>
<to uri= "mqseries:SomeOtherQueue" />

</filter>
</route>

</camelContext>
</beans>

Examples

Here is a simpleexampleusing a JXPath expression as a predicate in aMessage Filter

from("direct:start").
filter().jxpath("in/body/name='James'").
to("mock:result");

JXPATH INJECTION

You can useBean Integrationto invoke a method on a bean and use various languages such as
JXPath to extract a value from the message and bind it to a method parameter.

For example

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@JXPath("in/body/foo") String correlationID, @Body String

body) {
// process the inbound message here

}
}

201 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

Dependencies

To use JXpath in your camel routes you need to add the a dependency oncamel-jxpath
which implements the JXpath language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jxpath</artifactId>
<version>1.4.0</version>

</dependency>

MVEL

Avialable in Camel 2.0

Camel allowsMvelto be used as anExpressionor Predicatethe DSLor Xml Configuration.

You could use Mvel to create anPredicatein aMessage Filteror as anExpressionfor a
Recipient List

You can use Mvel dot notation to invoke operations. If you for instance have a body that
contains a POJO that has agetFamiliyName method then you can construct the syntax as
follows:

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

Variables

Variable Type Description

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)

exchangeId String the exchange id

fault Message the Fault message (if any)

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

LANGUAGES SUPPORTED APPENDIX202

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://mvel.codehaus.org/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

property(name) Object the property by the given name

property(name, type) Type the property by the given name as the given type

Samples

For example you could use Mvel inside aMessage Filterin XML

<route>
<from uri= "seda:foo" />
<filter>

<mvel>request.headers.foo == 'bar'</mvel>
<to uri= "seda:bar" />

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().mvel("request.headers.foo == 'bar'").to("seda:bar");

Dependencies

To use Mvel in your camel routes you need to add the a dependency oncamel-mvel which
implements the Mvel language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mvel</artifactId>
<version>2.0.0</version>

</dependency>

OGNL

Camel allowsOGNL to be used as anExpressionor Predicatethe DSLor Xml Configuration.

You could use OGNL to create anPredicatein aMessage Filteror as anExpressionfor a
Recipient List

You can use OGNL dot notation to invoke operations. If you for instance have a body that
contains a POJO that has agetFamiliyName method then you can construct the syntax as
follows:

203 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.opensymphony.com/ognl/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

Variables

Variable Type Description

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)

exchangeId String the exchange id

fault Message the Fault message (if any)

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

property(name) Object the property by the given name

property(name, type) Type the property by the given name as the given type

Samples

For example you could use OGNL inside aMessage Filterin XML

<route>
<from uri= "seda:foo" />
<filter>

<ognl>request.headers.foo = 'bar'</ognl>
<to uri= "seda:bar" />

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().ognl("request.headers.foo = 'bar'").to("seda:bar");

LANGUAGES SUPPORTED APPENDIX204

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

Dependencies

To use OGNL in your camel routes you need to add the a dependency oncamel-ognl which
implements the OGNL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>1.4.0</version>

</dependency>

PROPERTY EXPRESSION LANGUAGE

The Property Expression Language allows you to extract values of named exchange properties.

Available as of Camel 2.0

Example usage

The recipientList element of the Spring DSL can utilize a property expression like:

<route>
<from uri= "direct:a" />
<recipientList>

<property> myProperty </property>
</recipientList>

</route>

In this case, the list of recipients are contained in the property 'myProperty'.

And the same example in Java DSL:

from("direct:a").recipientList(property("myProperty"));

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that property is not a parameter but a stacked
method call)

from("direct:a").recipientList().property("myProperty");

Dependencies

The Property language is part ofcamel-core .

205 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download

SCRIPTING LANGUAGES

Camel supports a number of scripting languages which can be used to create anExpressionor
Predicatevia the standardJSR 223which is a standard part of Java 6.

The following scripting languages are integrated into the DSL:
¥ BeanShell
¥ JavaScript
¥ Groovy
¥ Python
¥ PHP
¥ Ruby

However anyJSR 223scripting language can be used using the generic DSL methods.

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

LANGUAGES SUPPORTED APPENDIX206

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://jcp.org/en/jsr/detail?id=223
https://cwiki.apache.org/confluence/display/CAMEL/BeanShell
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Python
https://cwiki.apache.org/confluence/display/CAMEL/PHP
https://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://jcp.org/en/jsr/detail?id=223

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

SEE ALSO

¥ Languages
¥ DSL
¥ Xml Configuration

BEANSHELL

Camel supportsBeanShellamong otherScripting Languagesto allow anExpressionor Predicate
to be used in theDSLor Xml Configuration.

To use a BeanShell expression use the following Java code

... beanShell("someBeanShellExpression") ...

For example you could use thebeanShell function to create anPredicatein aMessage Filter
or as anExpressionfor a Recipient List

207 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://www.beanshell.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

LANGUAGES SUPPORTED APPENDIX208

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

JAVASCRIPT

Camel supportsJavaScript/ECMAScriptamong otherScripting Languagesto allow anExpression
or Predicateto be used in theDSLor Xml Configuration.

To use a JavaScript expression use the following Java code

... javaScript("someJavaScriptExpression") ...

For example you could use thejavaScript function to create anPredicatein aMessage Filter
or as anExpressionfor a Recipient List

Example

In the sample below we use JavaScript to create aPredicateuse in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().javaScript("request.headers.get('user') ==
'admin'").to("seda:adminQueue")

.otherwise()
.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri= "direct:start" />
<choice>

<when>
<javaScript> request.headers.get('user') == 'admin' </javaScript>
<to uri= "seda:adminQueue" />

</when>

209 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://en.wikipedia.org/wiki/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

<otherwise>
<to uri= "seda:regularQueue" />

</otherwise>
</choice>

</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX210

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

GROOVY

Camel supportsGroovy among otherScripting Languagesto allow anExpressionor Predicate
to be used in theDSLor Xml Configuration.

To use a Groovy expression use the following Java code

... groovy("someGroovyExpression") ...

For example you could use thegroovy function to create anPredicatein aMessage Filteror
as anExpressionfor a Recipient List

Example

// lets route if a line item is over $100
from("queue:foo").filter(groovy("request.lineItems.any { i -> i.value > 100
}")).to("queue:bar")

And the Spring DSL:

<route>
<from uri= "queue:foo" />
<filter>

211 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://groovy.codehaus.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

<groovy> request.lineItems.any { i -> i.value > 100 } </groovy>
<to uri= "queue:bar" />

</filter>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX212

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

PYTHON

Camel supportsPythonamong otherScripting Languagesto allow anExpressionor Predicate
to be used in theDSLor Xml Configuration.

To use a Python expression use the following Java code

... python("somePythonExpression") ...

For example you could use thepython function to create anPredicatein aMessage Filteror
as anExpressionfor a Recipient List

Example

In the sample below we use Python to create aPredicateuse in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().python("request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

213 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.python.org/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

<route>
<from uri= "direct:start" />
<choice>

<when>
<python> request.headers['user'] == 'admin' </python>
<to uri= "seda:adminQueue" />

</when>
<otherwise>

<to uri= "seda:regularQueue" />
</otherwise>

</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

LANGUAGES SUPPORTED APPENDIX214

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

PHP

Camel supportsPHPamong otherScripting Languagesto allow anExpressionor Predicateto
be used in theDSLor Xml Configuration.

To use a PHP expression use the following Java code

... php("somePHPExpression") ...

For example you could use thephp function to create anPredicatein aMessage Filteror as an
Expressionfor a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

215 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.php.net/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX216

https://cwiki.apache.org/confluence/display/CAMEL/Download

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

RUBY

Camel supportsRubyamong otherScripting Languagesto allow anExpressionor Predicateto
be used in theDSLor Xml Configuration.

To use a Ruby expression use the following Java code

... ruby("someRubyExpression") ...

For example you could use theruby function to create anPredicatein aMessage Filteror as
anExpressionfor a Recipient List

Example

In the sample below we use Ruby to create aPredicateuse in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().ruby("$request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri= "direct:start" />
<choice>

<when>
<ruby> $request.headers['user'] == 'admin' </ruby>
<to uri= "seda:adminQueue" />

</when>
<otherwise>

<to uri= "seda:regularQueue" />
</otherwise>

</choice>
</route>

217 LANGUAGES SUPPORTED APPENDIX

http://www.ruby-lang.org/en/
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set atENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext The Camel Context

exchange org.apache.camel.Exchange The current Exchange

request org.apache.camel.Message The IN message

response org.apache.camel.Message The OUT message

Attributes

You can add your own attributes with theattribute(name, value) DSL method, such
as:

In the sample below we add an attributeuser that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user" , myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using thescript DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel" ,
"user.firstName").attribute("user" , myUser).to("seda:users");

This is a bit different using the Spring DSL where you use theexpression element that
doesn't support setting attributes (yet):

<from uri= "direct:in" />
<setHeader headerName= "firstName" >

<expression language= "jaskel" >user.firstName </expression>
</setHeader>
<to uri= "seda:users" />

LANGUAGES SUPPORTED APPENDIX218

Dependencies

To use scripting languages in your camel routes you need to add the a dependency oncamel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>1.4.0</version>

</dependency>

SIMPLE EXPRESSION LANGUAGE

The Simple Expression Language was a really simple language you can use, but has since grown
more powerful. Its primarily intended for being a really small and simple language for evaluating
ExpressionandPredicatewithout requiring any new dependencies or knowledge ofXPath; so
its ideal for testing in camel-core. Its ideal to cover 95% of the common use cases when you
need a little bit of expression based script in your Camel routes.

However for much more complex use cases you are generally recommended to choose a
more expressive and powerful language such as:

¥ JavaScript
¥ EL
¥ OGNL
¥ Mvel
¥ Groovy
¥ one of the supportedScripting Languages

The simple language uses${body } placeholders for complex expressions where the
expression contains constant literals. The ${ } placeholders can be omitted if the expression is
only the token itself.

To get the body of the in message:"body" , or "in.body" or "${body}" .

A complex expression must use ${ } placeholders, such as:"Hello
${in.header.name} how are you?" .

You can have multiple tokens in the same expression:"Hello ${in.header.name}
this is ${in.header.me} speaking" .
However you cannot nest tokens (i.e. having another ${ } placeholder in an existing, is not
allowed).

Variables

Variable Type Description

219 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/EL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages

File language is now merged with Simple language
From Camel 2.2 onwards, theFile Languageis now merged withSimplelanguage
which means you can use all the file syntax directly within the simple language.

exchangeId String Camel 2.3: the exchange id

id String the input message id

body Object the input body

in.body Object the input body

body.OGNL Object
Camel 2.3: the input body invoked using a Camel
OGNL expression.

in.body.OGNL Object
Camel 2.3: the input body invoked using a Camel
OGNL expression.

bodyAs(type) Type
Camel 2.3: Converts the body to the given type
determined by its classname

out.body Object the output body

header.foo Object refer to the input foo header

headers.foo Object refer to the input foo header

in.header.foo Object refer to the input foo header

in.headers.foo Object refer to the input foo header

header.foo[bar] Object
Camel 2.3: regard input foo header as a map and
perform lookup on the map with bar as key

in.header.foo[bar] Object
Camel 2.3: regard input foo header as a map and
perform lookup on the map with bar as key

in.headers.foo[bar] Object
Camel 2.3: regard input foo header as a map and
perform lookup on the map with bar as key

header.foo.OGNL Object
Camel 2.3: refer to the input foo header and invoke its
value using a Camel OGNL expression.

in.header.foo.OGNL Object
Camel 2.3: refer to the input foo header and invoke its
value using a Camel OGNL expression.

in.headers.foo.OGNL Object
Camel 2.3: refer to the input foo header and invoke its
value using a Camel OGNL expression.

out.header.foo Object refer to the out header foo

LANGUAGES SUPPORTED APPENDIX220

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple

out.headers.foo Object refer to the out header foo

property.foo Object refer to the foo property on the exchange

sys.foo String refer to the system property

sysenv.foo String Camel 2.3: refer to the system environment

exception Object

Camel 2.4: Refer to the exception object on the
exchange, isnull if no exception set on exchange. Will
fallback and grab caught exceptions
(Exchange.EXCEPTION_CAUGHT) if the Exchange
has any.

exception.OGNL Object
Camel 2.4: Refer to the exchange exception invoked
using a Camel OGNLE expression object

exception.message String

Camel 2.0. Refer to the exception.message on the
exchange, isnull if no exception set on exchange. Will
fallback and grab caught exceptions
(Exchange.EXCEPTION_CAUGHT) if the Exchange
has any.

date:command:pattern String

Camel 1.5. Date formatting using the
java.text.SimpleDataFormat patterns.
Supported commands are:now for current timestamp,
in.header.xxx or header.xxx to use the Date object
in the IN header with the key xxx.out.header.xxx to
use the Date object in the OUT header with the key xxx.

bean:bean expression Object

Camel 1.5. Invoking a bean expression using theBean
language. Specifying a method name you must use dot as
separator. In Camel 2.0 we also support the
?method=methodname syntax that is used by theBean
component.

properties:locations:keyString
Camel 2.3: Lookup a property with the given key. The
locations option is optional. See more atUsing
PropertyPlaceholder.

threadName String
Camel 2.3: Returns the name of the current thread.
Can be used for logging purpose.

OGNL support

Available as of Camel 2.3

221 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder

TheSimpleandBeanlanguage now supports a Camel OGNL notation for invoking beans in
a chain like fashion.
Suppose the Message IN body contains a POJO which has agetAddress() method.

Then you can use Camel OGNL notation to access the address object:

simple("${body.address}")
simple("${body.address.street}")
simple("${body.address.zip}")

Camel understands the shorthand names for getters, but you can invoke any method or use the
real name such as:

simple("${body.address}")
simple("${body.getAddress.getStreet}")
simple("${body.address.getZip}")
simple("${body.doSomething}")

You can also use the null safe operator (?.) to avoid NPE if for example the body does NOT
have an address

simple("${body?.address?.street}")

Its also possible to index inMapor List types, so you can do:

simple("${body[foo].name}")

To assume the body isMapbased and lookup the value withfoo as key, and invoke the
getName method on that value.

Suppose there was no value with the keyfoo then you can use the elvis operator to avoid
the NPE as shown:

simple("${body[foo]?.name}")

You can also accessList types, for example to get lines from the address you can do:

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

There is a speciallast keyword which can be used to get the last value from a list.

simple("${body.address.lines[last]}")

LANGUAGES SUPPORTED APPENDIX222

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean

And to get the 2nd last you can subtract a number, so we can uselast-1 to indicate this:

simple("${body.address.lines[last-1]}")

And the 3rd last is of course:

simple("${body.address.lines[last-2]}")

And yes you can combine this with the operator support as shown below:

simple("${body.address.zip} > 1000")

Operator support

Available as of Camel 2.0
We added a basic set of operators supported in the simple language in Camel 2.0. The parser is
limited to only support a single operator.

To enable it the left value must be enclosed in ${ }. The syntax is:

${leftValue} OP rightValue

Where the rightValue can be a String literal enclosed in' ' , null , a constant value or
another expression enclosed in ${ }.
Camel will automatically type convert the rightValue type to the leftValue type, so its able to eg.
convert a string into a numeric so you can use > comparison for numeric values.

The following operators is supported:

Operator Description

== equals

> greater than

>= greater than or equals

< less than

<= less than or equals

!= not equals

contains For testing if contains in a string based value

not
contains

For testing if not contains in a string based value

223 LANGUAGES SUPPORTED APPENDIX

regex
For matching against a given regular expression pattern defined as a String
value

not regex
For not matching against a given regular expression pattern defined as a String
value

in For matching if in a set of values, each element must be separated by comma.

not in
For matching if not in a set of values, each element must be separated by
comma.

is For matching if the left hand side type is an instanceof the value.

not is For matching if the left hand side type is not an instanceof the value.

range
For matching if the left hand side is within a range of values defined as
numbers:from..to

not range
For matching if the left hand side is not within a range of values defined as
numbers:from..to

And the following operators can be used to group expressions:

Operator Description

and and is used to group two expressions

or or is used to group two expressions

Notice: Currently and or or can only be used once in a simple language expression. This
might change in the future.

The syntax for AND is:

${leftValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

simple("${in.header.foo} == 'foo'")

// ' ' can be omitted
simple("${in.header.foo} == foo")

// here Camel will type convert '100' into the type of in.header.bar and if its an
Integer '100' will also be converter to an Integer
simple("${in.header.bar} == '100'")

LANGUAGES SUPPORTED APPENDIX224

simple("${in.header.bar} == 100")

// 100 will be converter to the type of in.header.bar so we can do > comparison
simple("${in.header.bar} > 100")

// testing for null
simple("${in.header.baz} == null ")

// testing for not null
simple("${in.header.baz} != null ")

And a bit more advanced example where the right value is another expression

simple("${in.header.date} == ${date:now:yyyyMMdd}")

simple("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel

simple("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a 4 digit value:

simple("${in.header.number} regex '\d{4}'")

And finally an example if the header equals any of the values in the list. Each element must be
separated by comma, and no space around.
This also works for numbers etc, as Camel will convert each element into the type of the left
hand side.

simple("${in.header.type} in 'gold,silver'")

And for all the last 3 we also support the negate test using not:

simple("${in.header.type} not in 'gold,silver'")

And you can test for if the type is a certain instance, eg for instance a String

simple("${in.header.type} is 'java.lang. String '")

We have added a shorthand for alljava.lang types so you can write it as:

simple("${in.header.type} is String ")

225 LANGUAGES SUPPORTED APPENDIX

Ranges is also supported. The range interval requires numbers and both from and end is
inclusive. For instance to test whether a value is between 100 and 199:

simple("${in.header.number} range 100..199")

Notice we use.. in the range without spaces. Its based on the same syntax as Groovy.

Using and / or

If you have two expressions you can combine them with theand or or operator.
For instance:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course theor is also supported. The sample example would be:

simple("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

Notice: Currently and or or can only be usedonce in a simple language expression. This
might change in the future.
So youcannot do:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and
${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

<from uri= "seda:orders" >
<filter>

<simple> in.header.foo </simple>
<to uri= "mock:fooOrders" />

</filter>
</from>

The Simple language can be used for the predicate test above in theMessage Filterpattern,
where we test if the in message has afoo header (a header with the keyfoo exists). If the
expression evaluates totrue then the message is routed to themock:foo endpoint,

otherwise its lost in the deep blue sea .

The same example in Java DSL:

LANGUAGES SUPPORTED APPENDIX226

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with all its various
builder methods, you had to resort to use some other languages
for testing with simple operators. Now you can do this with the simple language. In
the sample below we want to test if the header is a widget order:

<from uri= "seda:orders" >
<filter>

<simple> ${in.header.type} == 'widget' </simple>
<to uri= "bean:orderService?method=handleWidget" />

</filter>
</from>

from("seda:orders")
.filter().simple("in.header.foo").to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

from("direct:hello").transform().simple("Hello ${in.header.user} how are
you?").to("mock:reply");

Notice that we must use ${ } placeholders in the expression now to let Camel be able to parse
it correctly.

And this sample uses the date command to output current date.

from("direct:hello").transform().simple("The today is ${date:now:yyyyMMdd} and its
a great day.").to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be
included in the returned string:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator}").to("mock:reply");

Where orderIdGenerator is the id of the bean registered in theRegistry. If using Spring
then its the Spring bean id.

If we want to declare which method to invoke on the order id generator bean we must
prepend.method name such as below where we invoke thegenerateId method.

227 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Registry

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator.generateId}").to("mock:reply");

And in Camel 2.0 we can use the?method=methodname option that we are familiar with
the Beancomponent itself:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator?method=generateId}").to("mock:reply");

And from Camel 2.3 onwards you can also convert the body to a given type, for example to
ensure its a String you can do:

<transform>
<simple> Hello ${bodyAs(String)} how are you? </simple>

</transform>

There is a few types which have a shorthand notation, hence why we can useString instead
of java.lang.String . These are:byte[], String, Integer, Long . All other
types must use their FQN name, e.g.org.w3c.dom.Document .

Its also possible to lookup a value from a headerMap in Camel 2.3 onwards:

<transform>
<simple> The gold value is ${header.type[gold]} </simple>

</transform>

In the code above we lookup the header with nametype and regard it as ajava.util.Map
and we then lookup with the keygold and return the value.
If the header is not convertible to Map an exception is thrown. If the header with nametype
does not existsnull is returned.

Dependencies

The Bean language is part ofcamel-core .

FILE EXPRESSION LANGUAGE

Available as of Camel 1.5
The File Expression Language is an extension to theSimplelanguage, adding file related
capabilities. These capabilities is related to common use cases working with file path and names.
The goal is to allow expression to be used with theFileandFTPcomponents for setting
dynamic file patterns for both consumer and producer.

LANGUAGES SUPPORTED APPENDIX228

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File
https://cwiki.apache.org/confluence/display/CAMEL/FTP

File language is now merged with Simple language
From Camel 2.2 onwards, the file language is now merged withSimplelanguage
which means you can use all the file syntax directly within the simple language.

Syntax

This language is anextension to the Simplelanguage so theSimplesyntax applies also. So the
table below only lists the additional.
As opposed toSimplelanguageFile Languagealso supportsConstantexpressions so you can
enter a fixed filename.

All the file tokens uses the same expression name as the method on thejava.io.File
object, for instancefile:absolute refers to thejava.io.File.getAbsolute()
method. Notice that not all expressions is supported by the current Exchange. For instance the
FTPcomponent supports some of the options, where as theFilecomponent support all of
them.

Expression Type
File
Consumer

File
Producer

FTP
Consumer

FTP
Producer

Description

file:name String yes no yes no
refers to the file name (is relative to the
starting directory, see note below)

file:name.ext String yes no yes no Camel 2.3: refers to the file extension only

file:name.noext String yes no yes no
refers to the file name with no extension
(is relative to the starting directory, see
note below)

file:onlyname String yes no yes no
Camel 2.0: refers to the file name only with
no leading paths.

file:onlyname.noext String yes no yes no
Camel 2.0: refers to the file name only with
no extension and with no leading paths.

file:ext String yes no yes no
Camel 1.6.1/Camel 2.0: refers to the file
extension only

file:parent String yes no yes no refers to the file parent

file:path String yes no yes no refers to the file path

file:absolute Boolean yes no no no
Camel 2.0: refers to whether the file is
regarded as absolute or relative

file:absolute.path String yes no no no refers to the absolute file path

file:length Long yes no yes no
refers to the file length returned as a Long
type

file:modified Date yes no yes no
Camel 2.0: refers to the file last modified
returned as a Date type

date:command:pattern String yes yes yes yes

for date formatting using the
java.text.SimepleDataFormat
patterns. Is anextension to the Simple
language. Additional command is:file
(consumers only) for the last modified
timestamp of the file. Notice: all the
commands from theSimplelanguage can
also be used.

229 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Constant
absolute
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/File
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
length
modified
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple

File token example

Relative paths

We have ajava.io.File handle for the filehello.txt in the followingrelative
directory: .\filelanguage\test . And we configure out endpoint to use this starting
directory .\filelanguage . The the file tokens will return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

file:parent filelanguage\test

file:path filelanguage\test\hello.txt

file:absolute false

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

Absolute paths

We have ajava.io.File handle for the filehello.txt in the followingabsolute
directory: \workspace\camel\camel-core\target\filelanguage\test . And
we configure out endpoint to use the absolute starting directory
\workspace\camel\camel-core\target\filelanguage . The the file tokens will
return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

LANGUAGES SUPPORTED APPENDIX230

name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
name
name.ext
name.noext
onlyname
onlyname.noext
ext

file:parent \workspace\camel\camel-core\target\filelanguage\test

file:path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:absolute true

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

Samples

You can enter a fixedConstantexpression such asmyfile.txt :

fileName= "myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup
folder with the current date as a sub folder. This can be archived using an expression like:

fileName= "backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names is also supported so suppose the backup folder should be a sibling folder
then you can append .. as:

fileName= "../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to theSimplelanguage we have access to all the goodies from this
language also, so in this use case we want to use the in.header.type as a parameter in the
dynamic expression:

fileName= "../backup/${date:now:yyyyMMdd}/type-${in.header.type}/
backup-of-${file:name.noext}.bak"

If you have a custom Date you want to use in the expression then Camel supports retrieving
dates from the message header.

fileName= "orders/
order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

And finally we can also use a bean expression to invoke a POJO class that generates some
String output (or convertible to String) to be used:

fileName= "uniquefile-${bean:myguidgenerator.generateid}.txt"

231 LANGUAGES SUPPORTED APPENDIX

parent
path
absolute
absolute.path
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/Simple

And of course all this can be combined in one expression where you can use theFile Language,
Simpleand theBeanlanguage in one combined expression. This is pretty powerful for those
common file path patterns.

Dependencies

The File language is part ofcamel-core .

SQL

The SQL support is added byJoSQLand is primarily used for performing SQL queries on in-
memory objects. If you prefer to perform actual database queries then check out theJPA
component.

Camel supportsSQLto allow anExpressionor Predicateto be used in theDSLor Xml
Configuration. For example you could use SQL to create anPredicatein aMessage Filteror as
anExpressionfor a Recipient List.

from("queue:foo").setBody().sql("select * from MyType").to("queue:bar")

And the spring DSL:

<from uri= "queue:foo" />
<setBody>

<sql> select * from MyType </sql>
</setBody>
<to uri= "queue:bar" />

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

the property
key

Object the Exchange properties

the header key Object the exchange.in headers

the variable key Object
if any additional variables is added usingsetVariables
method

LANGUAGES SUPPORTED APPENDIX232

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean
http://josql.sourceforge.net/
https://cwiki.apache.org/confluence/display/CAMEL/JPA
http://en.wikipedia.org/wiki/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

Can be used in Spring XML
In Camel 2.2 you can use theFile Languagedirectly from theSimplelanguage which
makes aContent Based Routermore easy to do in Spring XML, where we can
route based on file extensions as shown below:

<from uri= "file://input/orders" />
<choice>

<when>
<simple> ${file:ext} == 'txt' </simple>
<to uri= "bean:orderService?method=handleTextFiles" />

</when>
<when>

<simple> ${file:ext} == 'xml' </simple>
<to uri= "bean:orderService?method=handleXmlFiles" />

</when>
<otherwise>

<to uri= "bean:orderService?method=handleOtherFiles" />
</otherwise>

</choice>

Dependencies

To use SQL in your camel routes you need to add the a dependency oncamel-josql which
implements the SQL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-josql</artifactId>
<version>1.4.0</version>

</dependency>

XPATH

Camel supportsXPathto allow anExpressionor Predicateto be used in theDSLor Xml
Configuration. For example you could use XPath to create anPredicatein aMessage Filteror
as anExpressionfor a Recipient List.

from("queue:foo").
filter().xpath(" //foo")).
to("queue:bar")

233 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Download
http://www.w3.org/TR/xpath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router

from("queue:foo").
choice().xpath(" //foo")).to("queue:bar").
otherwise().to("queue:others");

Namespaces

In 1.3 onwards you can easily use namespaces with XPath expressions using the Namespaces
helper class.

Namespaces ns = new Namespaces("c" , "http: //acme.com/cheese");

from("direct:start").filter().
xpath("/c:person[@name='James']" , ns).
to("mock:result");

Variables

Variables in XPath is defined in different namespaces. The default namespace is
http://camel.apache.org/schema/spring .

Namespace URI
Local
part

Type Description

http://camel.apache.org/xml/in/ in Message
the exchange.in
message

http://camel.apache.org/xml/out/ out Message
the exchange.out
message

http://camel.apache.org/xml/variables/
environment-variables

env Object
OS environment
variables

http://camel.apache.org/xml/variables/system-
properties

system Object
Java System
properties

http://camel.apache.org/xml/variables/
exchange-property

Object
the exchange
property

Camel will resolve variables according to either:
�� namespace given
�� no namespace given

LANGUAGES SUPPORTED APPENDIX234

http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
http://camel.apache.org/xml/variables/exchange-property

Namespace given

If the namespace is given then Camel is instructed exactly what to return. However when
resolving eitherin or out Camel will try to resolve a header with the given local part first, and
return it. If the local part has the valuebody then the body is returned instead.

No namespace given

If there is no namespace given then Camel resolves only based on the local part. Camel will try
to resolve a variable in the following steps:

�� from variables that has been set using thevariable(name, value) fluent
builder

�� from message.in.header if there is a header with the given key
�� from exchange.properties if there is a property with the given key

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description

in:body none Object Will return the in message body.

in:header the header name Object Will return the in message header.

out:body none Object Will return the out message body.

out:header the header name Object Will return the out message header.

Here's an example showing some of these functions in use.

from("direct:start").choice()
.when().xpath("in:header('foo') = 'bar'").to("mock:x")
.when().xpath("in:body() = '<two/>'").to("mock:y")
.otherwise().to("mock:z");

Using XML configuration

If you prefer to configure your routes in yourSpringXML file then you can use XPath
expressions as follows

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

235 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring

camel-spring.xsd">

<camelContext id= "camel" xmlns= "http://activemq.apache.org/camel/schema/spring"
xmlns:foo ="http://example.com/person" >

<route>
<from uri= "activemq:MyQueue" />
<filter>

<xpath> /foo:person[@name='James'] </xpath>
<to uri= "mqseries:SomeOtherQueue" />

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes,foo in this case, in the XPath expression for
easier namespace based XPath expressions!

See also thisdiscussion on the mailinglistabout using your own namespaces with xpath

Setting result type

TheXPathexpression will return a result type using native XML objects such as
org.w3c.dom.NodeList . But many times you want a result type to be a String. To do this
you have to instruct theXPathwhich result type to use.

In Java DSL:

xpath("/foo:person/@id" , String .class)

In Spring DSL you use theresultType attribute to provide a fully qualified classname:

<xpath resultType= "java.lang.String" >/foo:person/@id </xpath>

In @XPath:
Available as of Camel 2.1

@XPath(value = "concat('foo-', //order/name/)" , resultType = String .class) String name)

Where we use the xpath function concat to prefix the order name withfoo- . In this case we
have to specify that we want a String as result type so the concat function works.

Examples

Here is a simpleexampleusing an XPath expression as a predicate in aMessage Filter

LANGUAGES SUPPORTED APPENDIX236

http://www.nabble.com/fail-filter-XPATH-%28camel%29-td25531213.html
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XPath
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

If you have a standard set of namespaces you wish to work with and wish to share them across
many different XPath expressions you can use the NamespaceBuilder as shownin this example

// lets define the namespaces we'll need in our filters
Namespaces ns = new Namespaces("c" , "http: //acme.com/cheese")

.add("xsd" , "http: //www.w3.org/2001/XMLSchema");

// now lets create an xpath based Message Filter
from("direct:start").

filter(ns.xpath("/c:person[@name='James']")).
to("mock:result");

In this sample we have a choice construct. The first choice evaulates if the message has a header
key type that has the valueCamel .
The 2nd choice evaluates if the message body has a name tag<name> which values isKong .
If neither is true the message is routed in the otherwise block:

from("direct:in").choice()
// using $headerName is special notation in Camel to get the header key
.when().xpath("$type = 'Camel'")

.to("mock:camel")
// here we test for the body name tag
.when().xpath(" //name = 'Kong'")

.to("mock:donkey")
.otherwise()

.to("mock:other")
.end();

And the spring XML equivalent of the route:

<camelContext id= "camel" xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "direct:in" />
<choice>

<when>
<xpath> $type = 'Camel' </xpath>
<to uri= "mock:camel" />

</when>
<when>

<xpath> //name = 'Kong' </xpath>
<to uri= "mock:donkey" />

</when>
<otherwise>

<to uri= "mock:other" />
</otherwise>

237 LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java

</choice>
</route>

</camelContext>

XPATH INJECTION

You can useBean Integrationto invoke a method on a bean and use various languages such as
XPath to extract a value from the message and bind it to a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use
your own namespace URIs in an XPath expression you can use your own copy of theXPath
annotationto create whatever namespace prefixes you want to use.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.w3c.dom.NodeList;

import org.apache.camel.component.bean.XPathAnnotationExpressionFactory;
import org.apache.camel.language.LanguageAnnotation;
import org.apache.camel.language.NamespacePrefix;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER})
@LanguageAnnotation(language = "xpath" , factory =
XPathAnnotationExpressionFactory.class)
public @interface MyXPath {

String value();

// You can add the namespaces as the default value of the annotation
NamespacePrefix[] namespaces() default {
@NamespacePrefix(prefix = "n1" , uri = "http: //example.org/ns1"),
@NamespacePrefix(prefix = "n2" , uri = "http: //example.org/ns2")};

Class <?> resultType() default NodeList.class;
}

i.e. cut and paste upper code to your own project in a different package and/or annotation
name then add whatever namespace prefix/uris you want in scope when you use your
annotation on a method parameter. Then when you use your annotation on a method
parameter all the namespaces you want will be available for use in your XPath expression.

NOTE this feature is supported from Camel 1.6.1.

For example

LANGUAGES SUPPORTED APPENDIX238

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/language/XPath.html

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Path("/ns1:foo/ns2:bar/text()") String correlationID,

@Body String body) {
// process the inbound message here

}
}

Using XPathBuilder without an Exchange

Available as of Camel 2.3

You can now use theorg.apache.camel.builder.XPathBuilder without the
need for anExchange. This comes handy if you want to use it as a helper to do custom xpath
evaluations.

It requires that you pass in aCamelContextsince a lot of the moving parts inside the
XPathBuilder requires access to the CamelType Converterand hence whyCamelContextis
needed.

For example you can do something like this:

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar
xyz='cheese'/></foo>"));

This will match the given predicate.

You can also evaluate for example as shown in the following three examples:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>" , String .class);

Integer number = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>123</bar></foo>" , Integer .class);

Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar> true </bar></foo>" , Boolean .class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3

You need to addcamel-saxon as dependency to your project.

239 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

Its now easier to useSaxonwith the XPathBuilder which can be done in several ways as
shown below.
Where as the latter ones are the easiest ones.

Using a factory

// create a Saxon factory
XPathFactory fac = new net.sf.saxon.xpath.XPathFactoryImpl();

// create a builder to evaluate the xpath using the saxon factory
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").factory(fac);

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def" , result);

Using ObjectModel

// create a builder to evaluate the xpath using saxon based on its object model uri
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar,
'_')[2]").objectModel("http: //saxon.sf.net/jaxp/xpath/om");

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def" , result);

The easy one

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").saxon();

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def" , result);

Setting a custom XPathFactory using System Property

Available as of Camel 2.3

Camel now supports reading theJVM system property
javax.xml.xpath.XPathFactory that can be used to set a custom XPathFactory to
use.

This unit test shows how this can be done to use Saxon instead:

// set system property with the XPath factory to use which is Saxon
System .setProperty(XPathFactory.DEFAULT_PROPERTY_NAME + ":" + "http: //saxon.sf.net/
jaxp/xpath/om" , "net.sf.saxon.xpath.XPathFactoryImpl");

LANGUAGES SUPPORTED APPENDIX240

http://saxon.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]");

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def" , result);

Camel will log atINFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http: //saxon.sf.net/jaxp/xpath/om with value:
net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

Dependencies

The XPath language is part of camel-core.

XQUERY

Camel supportsXQuery to allow anExpressionor Predicateto be used in theDSLor Xml
Configuration. For example you could use XQuery to create anPredicatein aMessage Filteror
as anExpressionfor a Recipient List.

from("queue:foo").filter().
xquery(" //foo")).
to("queue:bar")

You can also use functions inside your query, in which case you need an explicit type
conversion (or you will get a org.w3c.dom.DOMException: HIERARCHY_REQUEST_ERR) by
passing the Class as a second argument to thexquery() method.

from("direct:start").
recipientList().xquery("concat('mock:foo.', /person/@city)" , String .class);

Variables

The IN message body will be set as thecontextItem . Besides this these Variables is also
added as parameters:

Variable Type Description
Support
version

exchange Exchange The current Exchange

241 LANGUAGES SUPPORTED APPENDIX

http://www.w3.org/TR/xquery/
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

in.body Object The In message's body >= 1.6.1

out.body Object The OUT message's body (if any) >= 1.6.1

in.headers.* Object
You can access the value of exchange.in.headers
with keyfoo by using the variable which name is
in.headers.foo

>=1.6.1

out.headers.* Object
You can access the value of exchange.out.headers
with keyfoo by using the variable which name is
out.headers.foo variable

>=1.6.1

key name Object

Any exchange.properties and exchange.in.headers
(exchange.in.headers support was removed since
camel 1.6.1) and any additional parameters set
usingsetParameters(Map) . These parameters
is added with they own key name, for instance if
there is an IN header with the key namefoo then
its added asfoo .

Using XML configuration

If you prefer to configure your routes in yourSpringXML file then you can use XPath
expressions as follows

<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
xmlns:foo ="http://example.com/person"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id= "camel" xmlns= "http://activemq.apache.org/camel/schema/spring" >
<route>

<from uri= "activemq:MyQueue" />
<filter>

<xquery> /foo:person[@name='James'] </xquery>
<to uri= "mqseries:SomeOtherQueue" />

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes,foo in this case, in the XPath expression for
easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit type conversion
which is done in the xml configuration via the@type attribute:

LANGUAGES SUPPORTED APPENDIX242

https://cwiki.apache.org/confluence/display/CAMEL/Spring

<xquery type= "java.lang.String" >concat('mock:foo.', /person/@city) </xquery>

Using XQuery as an endpoint

Sometimes an XQuery expression can be quite large; it can essentally be used forTemplating.
So you may want to use anXQuery Endpointso you can route using XQuery templates.

The following example shows how to take a message of an ActiveMQ queue (MyQueue) and
transform it using XQuery and send it to MQSeries.

<camelContext id= "camel" xmlns= "http: //camel.apache.org/schema/spring" >
<route>

<from uri= "activemq:MyQueue" />
<to uri= "xquery:com/acme/someTransform.xquery" />
<to uri= "mqseries:SomeOtherQueue" />

</route>
</camelContext>

Examples

Here is a simpleexampleusing an XQuery expression as a predicate in aMessage Filter

from("direct:start").filter().xquery("/person[@name='James']").to("mock:result");

Thisexampleuses XQuery with namespaces as a predicate in aMessage Filter

Namespaces ns = new Namespaces("c" , "http: //acme.com/cheese");

from("direct:start").
filter().xquery("/c:person[@name='James']" , ns).
to("mock:result");

Learning XQuery

XQuery is a very powerful language for querying, searching, sorting and returning XML. For
help learning XQuery try these tutorials

¥ Mike Kay'sXQuery Primer
¥ the W3SchoolsXQuery Tutorial

You might also find theXQuery function referenceuseful

243 LANGUAGES SUPPORTED APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xpath-functions/

Dependencies

To use XQuery in your camel routes you need to add the a dependency oncamel-saxon
which implements the XQuery language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (seethe download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>
<version>1.4.0</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX244

https://cwiki.apache.org/confluence/display/CAMEL/Download

C H A P T E R 9

¡ ¡ ¡ ¡

Pattern Appendix

There now follows a breakdown of the variousEnterprise Integration Patternsthat Camel
supports

MESSAGING SYSTEMS

Message Channel

Camel supports theMessage Channelfrom the EIP patterns. The Message Channel is an internal
implementation detail of theEndpointinterface and all interactions with the Message Channel
are via the Endpoint interfaces.

For more details see
¥ Message
¥ Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Message

Camel supports theMessagefrom the EIP patternsusing theMessageinterface.

245 CHAPTER 9 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Message.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html

To support various messageexchange patternslike one wayEvent MessageandRequest
Replymessages Camel uses anExchangeinterface which has apattern property which can be
set to InOnly for anEvent Messagewhich has a single inbound Message, orInOut for a
Request Replywhere there is an inbound and outbound message.

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Pipes and Filters

Camel supports thePipes and Filtersfrom the EIP patternsin various ways.

With Camel you can split your processing across multiple independentEndpointinstances
which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multipleEndpointor Message Translatorinstances as
follows

from("direct:a").pipeline("direct:x" , "direct:y" , "direct:z" , "mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel.
The opposite to pipeline is multicast; which fires the same message into each of its outputs.
(See the example below).

In Spring XML you can use the <pipeline/> element as of 1.4.0 onwards

<route>
<from uri= "activemq:SomeQueue" />
<pipeline>

<bean ref= "foo" />
<bean ref= "bar" />

CHAPTER 9 - PATTERN APPENDIX 246

https://cwiki.apache.org/confluence/display/CAMEL/Exchange+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Event+Message
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator

<to uri= "activemq:OutputQueue" />
</pipeline>

</route>

In the above the pipeline element is actually unnecessary, you could use this...

<route>
<from uri= "activemq:SomeQueue" />
<bean ref= "foo" />
<bean ref= "bar" />
<to uri= "activemq:OutputQueue" />

</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send
the same message into multiple pipelines - then the <pipeline/> element comes into its own.

<route>
<from uri= "activemq:SomeQueue" />
<multicast>

<pipeline>
<bean ref= "something" />
<to uri= "log:Something" />

</pipeline>
<pipeline>

<bean ref= "foo" />
<bean ref= "bar" />
<to uri= "activemq:OutputQueue" />

</pipeline>
</multicast>

</route>

In the above example we are routing from a singleEndpointto a list of different endpoints
specified usingURIs. If you find the above a bit confusing, try reading about theArchitectureor
try the Examples

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Message Router

TheMessage Routerfrom the EIP patternsallows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

247 CHAPTER 9 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns

The following example shows how to route a request from an inputqueue:a endpoint to
either queue:b , queue:c or queue:d depending on the evaluation of variousPredicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("seda:a").choice().when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c").otherwise().to("seda:d");
}

};

Using the Spring XML Extensions

<camelContext errorHandlerRef= "errorHandler" streamCache= "false" id= "camel"
xmlns= "http://camel.apache.org/schema/spring" >

<route>
<from uri= "seda:a" />
<choice>

<when>
<xpath> $foo = 'bar' </xpath>
<to uri= "seda:b" />

</when>
<when>

<xpath> $foo = 'cheese' </xpath>
<to uri= "seda:c" />

</when>
<otherwise>

<to uri= "seda:d" />
</otherwise>

</choice>
</route>

</camelContext>

Choice without otherwise

If you use achoice without adding anotherwise , any unmatched exchanges will be
dropped by default. If you prefer to have an exception for an unmatched exchange, you can add
a throwFault to the otherwise .

CHAPTER 9 - PATTERN APPENDIX 248

https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions

....otherwise().throwFault("No matching when clause found on choice block");

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Message Translator

Camel supports theMessage Translatorfrom the EIP patternsby using an arbitraryProcessor
in the routing logic, by using abeanto perform the transformation, or by using transform() in
the DSL. You can also use aData Formatto marshal and unmarshal messages in different
encodings.

Using the Fluent Builders

You can transform a message using Camel'sBean Integrationto call any method on a bean in
your Registrysuch as yourSpringXML configuration file as follows

from("activemq:SomeQueue").
beanRef("myTransformerBean" , "myMethodName").
to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc.
You can omit the method name parameter from beanRef() and theBean Integrationwill try to
deduce the method to invoke from the message exchange.

or you can add your own explicitProcessorto do the transformation

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String .class) + " World!");

}
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

249 CHAPTER 9 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Processor

from("direct:start").transform(body().append(" World!")).to("mock:result");

Use Spring XML

You can also useSpring XML Extensionsto do a transformation. Basically anyExpression
language can be substituted inside the transform element as shown below

<camelContext xmlns= "http://camel.apache.org/schema/spring" >
<route>

<from uri= "direct:start" />
<transform>

<simple> ${in.body} extra data! </simple>
</transform>
<to uri= "mock:end" />

</route>
</camelContext>

Or you can use theBean Integrationto invoke a bean

<route>
<from uri= "activemq:Input" />
<bean ref= "myBeanName" method= "doTransform" />
<to uri= "activemq:Output" />

</route>

You can also useTemplatingto consume a message from one destination, transform it with
something likeVelocityor XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on theMy.Queue
queue onActiveMQwith a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

For further examples of this pattern in use you could look at one of the JUnit tests
¥ TransformTest
¥ TransformViaDSLTest
¥ TransformProcessorTest
¥ TransformWithExpressionTest(test resource)

CHAPTER 9 - PATTERN APPENDIX 250

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Templating
https://cwiki.apache.org/confluence/display/CAMEL/Velocity
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformProcessorTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/TransformWithExpressionTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/transformWithExpressionContext.xml?view=markup

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Message Endpoint

Camel supports theMessage Endpointfrom the EIP patternsusing theEndpointinterface.

When using theDSLto createRoutesyou typically refer to Message Endpoints by their
URIsrather than directly using theEndpointinterface. Its then a responsibility of the
CamelContextto create and activate the necessary Endpoint instances using the available
Componentimplementations.

For more details see
¥ Message

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel

Camel supports thePoint to Point Channelfrom the EIP patternsusing the following
components

¥ SEDAfor in-VM seda based messaging
¥ JMSfor working with JMS Queues for high performance, clustering and load balancing
¥ JPAfor using a database as a simple message queue
¥ XMPPfor point-to-point communication over XMPP (Jabber)
¥ and others

251 CHAPTER 9 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/URIs
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/XMPP

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

Publish Subscribe Channel

Camel supports thePublish Subscribe Channelfrom the EIP patternsusing the following
components

¥ JMSfor working with JMS Topics for high performance, clustering and load balancing
¥ XMPPwhen using rooms for group communication

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this
keeps the producer and consumer decoupled but lets you control the fine grained routing
configuration using theDSLor Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("seda:a").multicast().to("seda:b" , "seda:c" , "seda:d");

CHAPTER 9 - PATTERN APPENDIX 252

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/XMPP
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef= "errorHandler" streamCache= "false" id= "camel"
xmlns= "http://camel.apache.org/schema/spring" >

<route>
<from uri= "seda:a" />
<multicast>

<to uri= "seda:b" />
<to uri= "seda:c" />
<to uri= "seda:d" />

</multicast>
</route>

</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read theGetting Started, you may also find
the Architectureuseful particularly the description ofEndpointandURIs. Then you could try
out some of theExamplesfirst before trying this pattern out.

DEAD LETTER CHANNEL

Camel supports theDead Letter Channelfrom the EIP patternsusing theDeadLetterChannel
processor which is anError Handler.

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it will

253 CHAPTER 9 - PATTERN APPENDIX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

Difference between Dead Letter Channel and Default Error
Handler
The major difference is thatDead Letter Channelhas a dead letter queue that
whenever anExchangecould not be processed is moved to. It willalways moved
failed exchanges to this queue.

Unlike theDefault Error Handlerthat doesnot have a dead letter queue. So whenever an
Exchangecould not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with
the handled option.

complete fine. So we typically wish to use some kind of redelivery policy to decide how many
times to try redeliver a message and how long to wait before redelivery attempts.

TheRedeliveryPolicydefines how the message is to be redelivered. You can customize
things like

¥ how many times a message is attempted to be redelivered before it is considered a
failure and sent to the dead letter channel

¥ the initial redelivery timeout
¥ whether or not exponential backoff is used (i.e. the time between retries increases

using a backoff multiplier)
¥ whether to use collision avoidance to add some randomness to the timings
¥ delay pattern a new option in Camel 2.0, see below for details.

Once all attempts at redelivering the message fails then the message is forwarded to the dead
letter queue.

About moving Exchange to dead letter queue and using handled

Handled on Dead Letter Channelwas introduced in Camel 2.0, this feature does not exist in
Camel 1.x

When all attempts of redelivery have failed theExchangeis moved to the dead letter queue
(the dead letter endpoint). The exchange is then complete and from the client point of view it
was processed. As such theDead Letter Channelhave handled theExchange.

For instance configuring the dead letter channel as:

errorHandler(deadLetterChannel("jms:queue:dead").maximumRedeliveries(3).redeliverDealy(5000));

TheDead Letter Channelabove will clear the caused exception when theExchangeis moved to
the jms:queue:dead destination and the client will not notice the failure.

By default handled istrue .

CHAPTER 9 - PATTERN APPENDIX 254

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

	Apache Camel
	User Guide
	Version 2.4.0

	Table of Contents
	Introduction
	Quickstart
	Walk through an Example Code
	What happens?
	Walk through another example
	Introduction
	Pipes and filters
	Using Camel Components
	Conclusion
	See also

	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	Problems with Camel's online documentation
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Want to know more about Camel

	Architecture
	URIs
	Current Supported URIs

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	CookBook
	Bean Integration
	Bean Binding
	Annotations
	Spring Remoting
	Bean Component
	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy

	Bean Binding
	Choosing the method to invoke
	Parameter binding
	Binding Annotations
	Examples
	@Handler
	POJO consuming

	Bean Injection
	Parameter Binding Annotations
	Example
	Using the DSL to invoke the bean method

	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy
	@MessageDriven or @Consume

	Using context option to apply only a certain CamelContext
	Using an explicit route
	Use the Bean endpoint
	Which approach to use?
	@EndpointInject

	Hiding the Camel APIs from your code using @Produce

	@RecipientList Annotation
	Simple Example using @Consume
	How it works
	More Complex Example Using DSL

	Using Exchange Pattern Annotations
	Specifying InOnly methods
	Class level annotations
	Overloading a class level annotation
	Using your own annotations
	How to decouple from middleware APIs

	Visualisation
	How to generate
	For OS X users

	Business Activity Monitoring
	How Camel BAM Works
	Simple Example
	Complete Example
	Use Cases

	Extract Transform Load (ETL)
	Mock Component
	URI format
	Options
	Simple Example
	Setting expectations
	Adding expectations to specific messages

	A Spring Example
	See Also

	Testing
	Testing mechanisms
	Camel Test Example
	Spring Test with XML Config Example
	Spring Test with Java Config Example

	Testing endpoints
	Stubbing out physical transport technologies
	Testing existing routes

	Camel Test
	Adding to your pom.xml
	Writing your test
	JNDI
	See Also

	Spring Testing
	Spring Test with Java Config Example
	Adding more Mock expectations
	Further processing the received messages
	Sending and receiving messages
	See Also

	Camel Guice
	Dependency Injecting Camel with Guice
	Bootstrapping with JNDI
	Configuring Component, Endpoint or RouteBuilder instances
	Creating multiple RouteBuilder instances per type
	See Also

	Templating
	Example
	See Also

	Database
	Database endpoints
	Database pattern implementations

	Parallel Processing and Ordering
	How to achieve parallel processing
	Concurrency issues
	Ordering issues

	Recommendations
	Using Message Groups with Camel

	Asynchronous Processing
	Overview
	When to Use
	Interface Details
	Implementing Processors that Use the AsyncProcessor API
	Asynchronous Route Sequence Scenarios
	Mixing Synchronous and Asynchronous Processors
	Staying synchronous in an AsyncProcessor

	Implementing Virtual Topics on other JMS providers
	What's the Camel Transport for CXF
	Integrate Camel into CXF transport layer
	Setting up the Camel Transport in Spring
	Integrating the Camel Transport in a programmatic way

	Configure the destination and conduit
	Namespace
	The destination element
	The conduit element

	Example Using Camel as a load balancer for CXF
	Complete Howto and Example for attaching Camel to CXF

	Introduction
	Using a Producer
	Tutorials
	Tutorial on Spring Remoting with JMS
	Preface
	Prerequisites
	Distribution
	About
	Create the Camel Project
	Update the POM with Dependencies

	Writing the Server
	Create the Spring Service
	Define the Camel Routes
	Configure Spring
	AOP Enabled Server
	Run the Server

	Writing The Clients
	Client Using The ProducerTemplate
	Client Using Spring Remoting
	Client Using Message Endpoint EIP Pattern
	Run the Clients

	Using the Camel Maven Plugin
	Using Camel JMX
	See Also
	Tutorial - camel-example-reportincident
	Introduction
	Motivation for this tutorial
	The use-case
	In EIP patterns

	Parts
	Links
	Part 1
	Prerequisites
	Initial Project Setup
	Developing the WebService
	CXF wsdl2java
	Configuration of the web.xml
	Getting rid of the old jsp world
	Configuration of CXF
	Implementing the ReportIncidentEndpoint
	Running our webservice
	Hitting the webservice
	Remote Debugging
	Adding a unit test

	End of part 1
	Resources
	Links
	Part 2
	Adding Camel
	Logging the "Hello World"
	Write to file - easy with the same code style
	Fully java based configuration of endpoints
	Lessons learned
	Reducing code lines
	Reducing even more code lines
	Message Translation
	First part of the solution
	End of part 2
	Resources
	Links
	Part 3
	Recap
	Adding the Event Driven Consumer
	Sending the email
	Unit testing mail
	Adding new unit test
	End of part 3
	Resources
	Links
	Part 4
	Introduction
	Routing
	RouteBuilder
	Adding the RouteBuilder

	Unit testing
	Adding the File Backup
	Setting the filename
	Using Bean Language to compute the filename
	Using a script language to set the filename

	Sending the email
	Conclusion
	Resources
	Links
	Better JMS Transport for CXF Webservice using Apache Camel
	So how to connect Apache Camel and CXF
	How is JMS configured in Camel
	Setting up the CXF client
	Setting up the CamelContext
	Running the Example
	Conclusion

	Tutorial using Axis 1.4 with Apache Camel
	Prerequisites
	Distribution
	Introduction
	Setting up the project to run Axis
	Maven 2
	wsdl
	Configuring Axis
	Running the Example

	Integrating Spring
	Using Spring

	Integrating Camel
	CamelContext
	Store a file backup

	Running the example
	Unit Testing
	Smarter Unit Testing with Spring

	Unit Test calling WebService
	Annotations
	The End
	See Also

	Tutorial on using Camel in a Web Application
	Step1: Edit your web.xml
	Step 2: Create a /WEB-INF/applicationContext.xml file
	Hints and Tips

	Tutorial Business Partners
	Background and Introduction
	Business Background
	Tutorial Background
	High-Level Diagram
	Tutorial Tasks

	Let's Get Started!
	Step 1: Initial Maven build
	Step 2: Get Sample Files
	Step 3: XSD and JAXB Beans for the Canonical XML Format
	Generating JAXB Beans

	Step 4: Initial Work on Customer 1 Input (XML over FTP)
	Create an XSLT template
	Create a unit test
	Set Up a Skeletal Camel/Spring Unit Test
	Flesh Out the Unit Test

	Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
	Create a CSV-handling POJO
	Create a unit test

	Step 6: Initial Work on Customer 3 Input (Excel over e-mail)
	Create an Excel-handling POJO
	Create a unit test

	Step 7: Put this all together into Camel routes for the Customer Input
	Step 8: Create a unit test for the Customer Input Routes

	Languages Supported Appendix
	Bean Language
	Using Bean Expressions from the Java DSL
	Using Bean Expressions from XML
	Writing the expression bean
	Non registry beans
	Other examples
	Dependencies

	Constant Expression Language
	Example usage
	Dependencies

	EL
	Variables
	Samples
	Dependencies

	Header Expression Language
	Example usage
	Dependencies

	JXPath
	Variables
	Using XML configuration
	Examples

	JXPath injection
	Dependencies

	Mvel
	Variables
	Samples
	Dependencies

	OGNL
	Variables
	Samples
	Dependencies

	Property Expression Language
	Example usage
	Dependencies

	Scripting Languages
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	See Also
	BeanShell
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	JavaScript
	Example
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	Groovy
	Example
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	Python
	Example
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	PHP
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	Ruby
	Example
	ScriptContext
	Attributes
	Any scripting language
	Dependencies

	Simple Expression Language
	Variables
	OGNL support
	Operator support
	Using and / or

	Samples
	Dependencies

	File Expression Language
	Syntax
	File token example
	Relative paths
	Absolute paths

	Samples
	Dependencies

	SQL
	Variables
	Dependencies

	XPath
	Namespaces
	Variables
	Namespace given
	No namespace given

	Functions
	Using XML configuration
	Setting result type
	Examples

	XPath injection
	Using XPathBuilder without an Exchange
	Using Saxon with XPathBuilder
	Setting a custom XPathFactory using System Property
	Dependencies

	XQuery
	Variables
	Using XML configuration
	Using XQuery as an endpoint
	Examples
	Learning XQuery
	Dependencies

	Pattern Appendix
	Messaging Systems
	Message Channel
	Using This Pattern

	Message
	Using This Pattern

	Pipes and Filters
	Using Routing Logic
	Using This Pattern

	Message Router
	Choice without otherwise
	Using This Pattern

	Message Translator
	Using This Pattern

	Message Endpoint
	Using This Pattern

	Messaging Channels
	Point to Point Channel
	Using This Pattern

	Publish Subscribe Channel
	Using Routing Logic
	Using This Pattern

	Dead Letter Channel
	Redelivery
	About moving Exchange to dead letter queue and using handled
	How to let the client notice the error?

	About moving Exchange to dead letter queue and using the original message
	OnRedelivery
	Redelivery default values
	Redeliver Delay Pattern

	Redelivery header
	Which endpoint failed

	Samples
	How can I modify the Exchange before redelivery?
	Using This Pattern

	Guaranteed Delivery
	Using This Pattern

	Message Bus
	Using This Pattern

	Message Construction

	Event Message
	Explicitly specifying InOnly
	Using This Pattern

	Request Reply
	Explicitly specifying InOut
	Using This Pattern

	Correlation Identifier
	See Also

	Return Address
	Using This Pattern

	Message Routing
	Content Based Router
	Using This Pattern

	Message Filter
	Using stop
	Using This Pattern

	Dynamic Router
	Using This Pattern

	Recipient List
	Static Recipient List
	Dynamic Recipient List
	Iteratable value
	Using delimiter in Spring XML

	Sending to multiple recipients in parallel
	Stop continuing in case one recipient failed
	Ignore invalid endpoints
	Using custom AggregationStrategy
	Using custom thread pool
	Using method call as recipient list
	Using This Pattern

	Splitter
	Example
	Message Headers
	Exchange properties
	Parallel execution of distinct 'parts'
	Stream based
	Specifying a custom aggregation strategy
	Specifying a custom ThreadPoolExecutor
	Using a Pojo to do the splitting
	Split aggregate request/reply sample

	Stop processing in case of exception
	Using This Pattern

	Aggregator
	Aggregator options
	Exchange Properties
	About AggregationStrategy
	About completion
	Persistent AggregationRepository
	Examples
	Using completionTimeout
	Using completionSize
	Using completionPredicate
	Using dynamic completionTimeout
	Using dynamic completionSize
	Using This Pattern

	See also
	Resequencer
	Batch Resequencing
	Allow Duplicates
	Reverse
	Resequence JMS messages based on JMSPriority

	Stream Resequencing
	Further Examples
	Using This Pattern

	Composed Message Processor
	Example
	Using This Pattern

	Scatter-Gather
	Dynamic Scatter-Gather Example
	Static Scatter-Gather Example
	Using This Pattern

	Routing Slip
	Example
	Configuration options

	Ignore invalid endpoints
	Expression supporting
	Further Examples
	Availability
	Using This Pattern

	Throttler
	Asynchronous delaying
	Using This Pattern

	Sampling Throttler
	Samples
	Using This Pattern

	See Also
	Delayer
	Camel 2.0 - Spring DSL
	Camel 1.x - Spring DSL

	Asynchronous delaying
	From Java DSL
	From Spring XML

	Creating a custom delay
	Using This Pattern

	Load Balancer
	Build in load balancing policies
	Round Robin
	Failover
	Using failover in Spring DSL
	Using failover in round robin mode
	Using This Pattern

	Multicast
	Example

	Stop processing in case of exception
	Using This Pattern

	Loop
	Examples
	Using This Pattern

	Message Transformation
	Content Enricher
	Content enrichment using a Message Translator or a Processor
	Content enrichment using the enrich DSL element
	Aggregation strategy is optional
	Content enrich using pollEnrich
	Using This Pattern

	Content Filter
	Using This Pattern

	Claim Check
	Example
	Using This Pattern

	Normalizer
	Example
	See Also
	Using This Pattern

	Sort
	Using from Java DSL
	Using from Spring DSL
	Using This Pattern

	Messaging Endpoints
	Messaging Mapper
	See also
	Using This Pattern

	Event Driven Consumer
	Using This Pattern

	Polling Consumer
	ConsumerTemplate
	Using ConsumerTemplate with Spring DSL
	Timer based polling consumer

	Scheduled Poll Components
	ScheduledPollConsumer Options
	About error handling and scheduled polling consumers
	Controlling the error handling using PollingConsumerPollStrategy
	Configuring an Endpoint to use PollingConsumerPollStrategy
	Using This Pattern

	See Also
	Competing Consumers
	Enabling Competing Consumers with JMS
	Using This Pattern

	Message Dispatcher
	See Also
	Using This Pattern

	Selective Consumer
	Using This Pattern

	Durable Subscriber
	See Also
	Using This Pattern

	Idempotent Consumer
	Options
	Using This Pattern

	Transactional Client
	Transaction Policies

	Camel 1.x - Database Sample
	Camel 1.x - JMS Sample
	Camel 1.x - Spring based configuration
	DelayPolicy (@deprecated)

	Camel 2.0 - Database Sample
	Camel 2.0 - JMS Sample

	Using multiple routes with different propagation behaviors
	See Also
	Using This Pattern
	Messaging Gateway
	See Also
	Using This Pattern

	Service Activator
	See Also
	Using This Pattern

	System Management
	Detour
	Example
	Using This Pattern

	Wire Tap
	WireTap node
	Sending a copy (traditional wire tap)
	Sending a new Exchange

	Camel 1.x
	Further Example
	Using This Pattern

	Log
	Using log DSL
	Using log DSL from Spring
	Using This Pattern

	Component Appendix
	ActiveMQ Component
	URI format
	Options
	Configuring the Connection Factory
	Configuring the Connection Factory using Spring XML
	Using connection pooling
	Invoking MessageListener POJOs in a Camel route
	Consuming Advisory Messages
	Getting Component JAR
	camel-jms
	ActiveMQ 5.2 or later
	ActiveMQ 5.1.0
	ActiveMQ 4.x

	See Also

	ActiveMQ Journal Component
	URI format
	Options
	Expected Exchange Data Types
	See Also

	AMQP
	URI format
	See Also

	Atom Component
	URI format
	Options
	Exchange data format
	Message Headers
	Samples
	See Also

	Bean Component
	URI format
	Options
	Using
	Bean as endpoint
	Bean Binding
	See Also

	Bean Validation Component
	URI format
	URI Options
	Example
	See Also

	Browse Component
	URI format
	Sample
	See Also

	Cache Component
	URI format
	Options
	Sending/Receiving Messages to/from the cache
	Message Headers
	Cache Producer
	Cache Consumer
	Cache Processors

	Cache Usage Samples
	Example 1: Configuring the cache
	Example 2: Adding keys to the cache
	Example 2: Updating existing keys in a cache
	Example 3: Deleting existing keys in a cache
	Example 4: Deleting all existing keys in a cache
	Example 5: Notifying any changes registering in a Cache to Processors and other Producers
	Example 6: Using Processors to selectively replace payload with cache values
	Example 7: Getting an entry from the Cache
	Example 8: Checking for an entry in the Cache

	Cometd Component
	URI format
	Examples
	Options
	See Also

	Crypto component for Digital Signatures
	Introduction
	URI format
	Options
	Using
	1) Raw keys
	2) KeyStores and Aliases.
	3) Changing JCE Provider and Algorithm
	4) Changing the Signature Mesasge Header
	5) Changing the buffersize
	6) Supplying Keys dynamically.

	See Also

	CXF Component
	URI format
	Options
	The descriptions of the dataformats
	How to enable CXF's LoggingOutInterceptor in MESSAGE mode

	Description of relayHeaders option
	Available in Release 1.6.1 and after (only in POJO mode)
	Changes since Release 2.0

	Configure the CXF endpoints with Spring
	How to make the camel-cxf component use log4j instead of java.util.logging
	How to let camel-cxf response message with xml start document
	How to consume a message from a camel-cxf endpoint in POJO data format
	How to prepare the message for the camel-cxf endpoint in POJO data format
	How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
	How to get and set SOAP headers in POJO mode
	How to get and set SOAP headers in PAYLOAD mode
	SOAP headers are not available in MESSAGE mode
	How to throw a SOAP Fault from Camel
	How to propagate a camel-cxf endpoint's request and response context
	Attachment Support

	CXF Bean Component (2.0 or later)
	URI format
	Options
	Headers
	A Working Sample
	See Also

	CXFRS Component
	URI format
	Options
	How to configure the REST endpoint in Camel ?
	How to consumer the REST request in Camel ?
	How to invoke the REST service through camel-cxfrs producer ?

	DataSet Component
	URI format
	Options
	Configuring DataSet
	Example
	Properties on SimpleDataSet
	Load testing ActiveMQ with Camel
	See Also

	Direct Component
	URI format
	Options
	Samples
	See Also

	Esper
	URI format
	Options
	Demo
	See Also

	Event Component
	URI format
	See Also

	File Component - Camel 2.0 onwards
	URI format
	URI Options
	Common
	Consumer only
	Default behavior for file consumer
	Producer only
	Default behavior for file producer

	Move and Delete operations
	Fine grained control over Move and PreMove option
	About moveFailed

	Message Headers
	File producer only
	File consumer only

	Batch Consumer
	Exchange Properties, file consumer only

	Common gotchas with folder and filenames
	Filename Expression
	Consuming files from folders where others drop files directly
	Samples
	Read from a directory and write to another directory
	Reading recursive from a directory and write the another
	Using flatten

	Reading from a directory and the default move operation
	Read from a directory and process the message in java
	Read files from a directory and send the content to a jms queue
	Writing to files
	Write to subdirectory using Exchange.FILE_NAME
	Using expression for filenames

	Avoiding reading the same file more than once (idempotent consumer)
	Using a file based idempotent repository
	Using a JPA based idempotent repository

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher

	Sorting using Comparator
	Sorting using sortBy
	Using GenericFileProcessStrategy
	Debug logging
	See Also

	Flatpack Component
	URI format
	URI Options
	Examples
	Message Headers
	Message Body
	Header and Trailer records
	Using the endpoint

	Flatpack DataFormat
	Options
	Usage
	Dependencies
	See Also

	Freemarker
	URI format
	Options
	Headers
	Freemarker Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	FTP/SFTP/FTPS Component - Camel 2.0 onwards
	URI format
	URI Options
	More URI options
	Examples

	Default when consuming files
	limitations

	Message Headers
	About timeouts
	Using Local Work Directory
	Samples
	Consuming a remote FTPS server (implicit SSL) and client authentication
	Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher
	Debug logging
	See Also

	Camel Components for Google App Engine
	Camel context
	Camel 2.1
	Camel 2.2 or higher

	The web.xml

	HDFS Component
	URI format
	Options
	KeyType and ValueType

	Splitting Strategy

	Hibernate Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	HL7 Component
	HL7 MLLP protocol
	Exposing a HL7 listener

	HL7 Model using java.lang.String
	HL7 Model using HAPI
	HL7 DataFormat
	Message Headers
	Camel 1.x
	Camel 2.0

	Options
	Dependencies
	OSGi

	Samples
	Sample using plain String objects

	See Also

	HTTP Component
	URI format
	HttpEndpoint Options
	Camel 2.2 or older: Setting Authentication and Proxy
	Camel 2.3 or newer: HttpConfiguration - Setting Authentication and Proxy

	HttpComponent Options
	Message Headers
	Camel 1.x
	Camel 2.x

	Message Body
	Response code
	HttpOperationFailedException
	Calling using GET or POST
	How to get access to HttpServletRequest and HttpServletResponse
	Configuring URI to call
	Configuring URI Parameters
	How to set the http method (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP producer
	Using client tineout - SO_TIMEOUT
	Configuring a Proxy
	Using proxy settings outside of URI

	Configuring charset
	Sample with scheduled poll
	URI Parameters from the endpoint URI
	URI Parameters from the Message
	Getting the Response Code

	Using throwExceptionOnFailure=false to get any response back
	Disabling Cookies
	Advanced Usage
	Setting MaxConnectionsPerHost
	Using HTTPS to authenticate gotchas
	Accepting self signed certifications from remote server
	Setting up SSL for HTTP Client

	See Also

	iBATIS
	URI format
	Options
	Message Headers
	Message Body
	Samples
	Using StatementType for better control of IBatis
	Scheduled polling example
	Using onConsume

	See Also

	IRC Component
	URI format
	Options
	SSL Support
	Using keys
	See Also

	JavaSpace Component
	URI format
	Examples
	Sending and Receiving Entries
	Sending and receiving serializable objects
	Using JavaSpace as a remote invocation transport

	Options
	See Also

	JBI Component
	URI format
	Examples

	URI options
	Examples

	Using Stream bodies
	Creating a JBI Service Unit
	See Also

	JCR Component
	URI format
	Usage
	Message properties
	Example
	See Also

	JDBC Component
	URI format
	Options
	Result
	Message Headers

	Samples
	Sample - Polling the database every minute
	See Also

	Jetty Component
	URI format
	Options
	Message Headers
	Usage
	Sample
	Session Support
	SSL Support (HTTPS)
	Default behavior for returning HTTP status codes
	Customizing HttpBinding
	Jetty handlers and security configuration
	How to return a custom HTTP 500 reply message
	Multi-part Form support
	Jetty JMX support
	See Also

	Jing Component
	URI format
	Options
	Example
	See Also

	JMS Component
	URI format
	Using Temporary Destinations

	Notes
	Options
	Most commonly used options
	All the other options

	Message Mapping between JMS and Camel
	Disabling auto-mapping of JMS messages
	Using a custom MessageConverter
	Controlling the mapping strategy selected

	Message format when sending
	Message format when receiving
	About using Camel to send and receive messages and JMSReplyTo
	JmsProducer
	JmsConsumer

	Reuse endpoint and send to different destinations computed at runtime
	Configuring different JMS providers
	Using JNDI to find the ConnectionFactory
	Using JNDI to lookup the physical queues
	Using WebSphere MQ

	Concurrent Consuming
	Enabling Transacted Consumption
	Using JMSReplyTo for late replies
	Using a request timeout
	Samples
	Receiving from JMS
	Sending to a JMS
	Using Annotations
	Spring DSL sample
	Other samples
	Using JMS as a Dead Letter Queue storing Exchange
	Using JMS as a Dead Letter Channel storing error only

	See Also

	JPA Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	Message Headers
	Configuring EntityManagerFactory
	Configuring TransactionManager
	Using a consumer with a named query
	Using a consumer with a query
	Using a consumer with a native query
	Example
	See Also

	JT/400 Component
	URI format
	URI options
	Usage
	Example
	See Also

	LDAP Component
	URI format
	Options
	Result
	DirContext
	Samples
	See Also

	Log Component
	URI format
	Options
	Formatting
	Regular logger sample
	Regular logger with formatter sample
	Throughput logger sample
	See Also

	Lucene (Indexer and Search) Component
	URI format
	Insert Options
	Query Options
	Sending/Receiving Messages to/from the cache
	Message Headers
	Lucene Producers
	Lucene Processor

	Lucene Usage Samples
	Example 1: Creating a Lucene index
	Example 2: Loading properties into the JNDI registry in the Camel Context
	Example 2: Performing searches using a Query Producer
	Example 3: Performing searches using a Query Processor

	Mail Component
	URI format
	Sample endpoints
	Default ports

	Options
	SSL support
	Defaults changed in Camel 1.4
	Defaults changed in Camel 1.5
	Mail Message Content
	Headers take precedence over pre-configured recipients
	Multiple recipients for easier configuration
	Setting sender name and email
	SUN JavaMail
	Samples
	Sending mail with attachment sample
	SSL sample
	Consuming mails with attachment sample
	See Also

	MINA Component
	URI format
	Options
	Default behavior changed
	Using a custom codec
	Sample with sync=false
	Sample with sync=true
	Sample with Spring DSL
	Configuring Mina endpoints using Spring bean style
	Closing Session When Complete
	Get the IoSession for message
	Configuring Mina filters
	See Also

	Mock Component
	URI format
	Options
	Simple Example
	Setting expectations
	Adding expectations to specific messages

	A Spring Example
	See Also

	MSV Component
	URI format
	Options
	Example
	See Also

	Nagios
	URI format
	Options
	Headers
	Sending message examples
	Using NagiosEventNotifer
	See Also

	Netty Component
	URI format
	Options
	Registry based Options
	Sending Messages to/from a Netty endpoint
	Netty Producer
	Netty Consumer

	Usage Samples
	A UDP Netty endpoint using Request-Reply and serialized object payload
	A TCP based Netty consumer endpoint using One-way communication
	An SSL/TCP based Netty consumer endpoint using Request-Reply communication
	Using Multiple Codecs

	Closing Channel When Complete
	See Also

	NMR Component
	Installing
	NMR consumer and producer endpoints
	URI format
	URI Options
	Examples

	Using Stream bodies
	See Also

	Quartz Component
	URI format
	Options
	Configuring quartz.properties file
	Starting the Quartz scheduler
	Clustering
	Message Headers
	Using Cron Triggers
	Using Cron Triggers in Camel 1.x
	See Also

	Quickfix Component
	URI format
	Exchange data format
	Samples
	See Also

	Printer Component
	URI format
	Options
	Sending Messages to a Printer
	Printer Producer

	Usage Samples
	Example 1: Printing text based payloads on a Default printer using letter stationary and one-sided mode
	Example 2: Printing GIF based payloads on a Remote printer using A4 stationary and one-sided mode
	Example 3: Printing JPEG based payloads on a Remote printer using Japanese Postcard stationary and one-sided mode

	Properties Component
	URI format
	Options

	Using PropertyPlaceholder
	Syntax
	PropertyResolver
	Defining location
	Configuring in Java DSL
	Configuring in Spring XML
	Using a Properties from the Registry
	Examples using properties component
	Examples
	Example with Simple language
	Additional property placeholder supported in Spring XML
	Unit tests
	See Also

	Ref Component
	URI format
	Runtime lookup
	Sample
	See Also

	Restlet Component
	URI format
	Options
	Message Headers
	Camel 1.x
	Camel 2.x

	Message Body
	Samples
	Restlet Endpoint with Authentication
	Single restlet endpoint to service multiple methods and URI templates (2.0 or later)

	RMI Component
	URI format
	Options
	Using
	See Also

	RSS Component
	URI format
	Options
	Exchange data types
	Message Headers
	RSS Dataformat
	Merging multiple incoming feeds
	Filtering entries
	See Also

	Scalate
	URI format
	Message Headers
	Scalate Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	SEDA Component
	URI format
	Options
	Changes in Camel 2.0
	Concurrent consumers
	Difference between thread pools and concurrent consumers

	Thread pools
	Sample
	Using multipleConsumers
	See Also

	Servlet Component
	URI format
	Options
	Message Headers
	Usage
	Sample
	See Also

	Smooks
	EDI DataFormat
	Dependencies

	SMPP Component
	URI format
	URI Options
	Message Headers
	Samples
	Debug logging
	See Also

	SNMP Component
	URI format
	Options
	The result of a poll
	Examples
	See Also

	Spring Integration Component
	URI format
	Options
	Usage
	Examples
	Using the Spring integration endpoint
	The Source and Target adapter

	See Also

	Stream Component
	URI format
	Options
	Message content
	Samples
	See Also

	String Template
	URI format
	Options
	Headers
	Hot reloading
	StringTemplate Attributes
	Samples
	The Email Sample
	See Also

	SQL Component
	URI format
	Options
	Treatment of the message body
	Result of the query
	Header values
	Configuration in Camel 1.5.0 or lower
	Configuration in Camel 1.5.1 or higher
	Sample
	See Also

	Test Component
	URI format
	Example
	See Also

	Timer Component
	URI format
	Options
	Exchange Properties
	Message Headers
	Sample
	See Also

	Validation Component
	URI format
	Options
	Example
	See Also

	Velocity
	URI format
	Options
	Message Headers
	Velocity Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	VM Component
	URI format
	Options
	Samples
	See Also

	XMPP Component
	URI format
	Options
	Headers and setting Subject or Language
	Examples
	See Also

	XQuery
	URI format
	See Also

	XSLT
	URI format
	Options
	Using XSLT endpoints
	Getting Parameters into the XSLT to work with
	Spring XML versions
	Using xsl:include
	Notes on using XSTL and Java Versions
	See Also

	Labels

